Corrigé du DS n° 4

I Préliminaires

1 - Soient $M \in \mathcal{M}_{n,r}(\mathbb{K})$ et $N \in \mathcal{M}_{r,m}(\mathbb{K})$. On a $MN \in \mathcal{M}_{n,m}(\mathbb{K})$ et pour tout $i \in \llbracket 1,n \rrbracket$:

$$\sum_{i=1}^{m} |MN(i,j)| = \sum_{i=1}^{m} \left| \sum_{k=1}^{r} M(i,k) N(k,j) \right| \le \sum_{j=1}^{m} \sum_{k=1}^{r} |M(i,k) N(k,j)|.$$

Et:

$$\begin{split} \sum_{j=1}^{m} \sum_{k=1}^{r} \left| M(i,k)N(k,j) \right| &= \sum_{j=1}^{m} \sum_{k=1}^{r} \left| M(i,k) \right| \left| N(k,j) \right| \\ &= \sum_{k=1}^{r} \sum_{j=1}^{m} \left| M(i,k) \right| \left| N(k,j) \right| \\ &= \sum_{k=1}^{r} \left(\left| M(i,k) \right| \sum_{j=1}^{m} \left| N(k,j) \right| \right) \end{split}$$

Or,
$$\sum_{j=1}^{m} |N(k,j)| \le ||N|| = \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |N(i,j)| \right)$$
, donc:

$$\sum_{j=1}^{m} |MN(i,j)| \le \sum_{k=1}^{r} (|M(i,k)| ||N||) = \left(\sum_{k=1}^{r} |M(i,k)| \right) ||N||.$$

Enfin,
$$\sum_{k=1}^{r} |M(i,k)| \le \max_{1 \le i \le n} \left(\sum_{k=1}^{r} |M(i,k)| \right) = ||M||$$
, donc:

$$\sum_{j=1}^{m} |MN(i,j)| \le ||M|| ||N||.$$

Ceci étant vrai pour tout $i \in [1, n]$, on obtient $\max_{1 \le i \le n} \left(\sum_{j=1}^{m} |MN(i, j)| \right) \le ||M|| ||N||$, soit :

$$||MN|| \leq ||M|| ||N||$$

2 - Comme P est une matrice stochastique, on a pour tous $i, j \in [1, n]$, $P(i, j) \ge 0$, donc pour tout $i \in [1, n]$, $\sum_{i=1}^{n} |P(i, j)| = \sum_{i=1}^{n} P(i, j) = 1$. Ainsi, $\max_{1 \le i \le n} \sum_{j=1}^{n} |P(i, j)| = 1$, soit:

$$||P||=1$$

3 - Commençons par prouver que le produit de deux matrices stochastiques est une matrice stochastique. Soient A et B deux matrices stochastiques de $\mathcal{M}_n(\mathbb{R})$.

On a alors:

- pour tous $i, j \in [1, n]$, $A(i, j) \ge 0$ et $B(i, j) \ge 0$, donc $AB(i, j) = \sum_{k=1}^{n} A(i, k)B(k, j) \ge 0$;
- pour tout $i \in [1, n]$:

$$\sum_{j=1}^{n} AB(i,j) = \sum_{j=1}^{n} \sum_{k=1}^{n} A(i,k)B(k,j) = \sum_{k=1}^{n} \sum_{j=1}^{n} A(i,k)B(k,j)$$
$$= \sum_{k=1}^{n} \left(A(i,k) \sum_{j=1}^{n} B(k,j) \right) = \sum_{k=1}^{n} \left(A(i,k) \times 1 \right) = \sum_{k=1}^{n} A(i,k) = 1$$

Ainsi, AB est bien stochastique.

Prouvons alors par récurrence sur k que pour tout $k \in \mathbb{N}^*$, P^k est stochastique.

Initialisation: Par hypothèse, $P^1 = P$ est stochastique, donc la propriété est vraie au rang k = 1.

Hérédité : Supposons la propriété vraie à un rang $k \in \mathbb{N}^*$.

Alors, comme P et P^k sont stochastiques (par hypothèse pour P et par hypothèse de récurrence pour P^k), $P^kP = P^{k+1}$ est elle aussi stochastique d'après ce qui précède.

Ainsi, la propriété est donc vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}^*$, soit :

$$P^k$$
 est stochastique.

II Pseudo-inverse

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On note a l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

Rappelons que par définition, $\operatorname{Im} A = \operatorname{Im} a$ et $\ker A = \ker a$, et comme $A^2 = \left(M_{\mathcal{B}_c}(a)\right)^2 = M_{\mathcal{B}_c}(a^2)$ où \mathcal{B}_c est la base canonique de \mathbb{R}^n , on a aussi $\operatorname{Im} A^2 = \operatorname{Im} a^2$ et $\ker A^2 = \ker a^2$.

4 - On suppose que A admet un pseudo-inverse A'.

On a toujours $\operatorname{Im} A^2 \subset \operatorname{Im} A$, donc montrer que $rg(A^2) = rg(A)$ revient à montrer que $\operatorname{Im} A^2 = \operatorname{Im} A$ et même seulement que $\operatorname{Im} A \subset \operatorname{Im} A^2$

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on veut prouver que $AX \in \operatorname{Im} A^2$. On a A'A = AA' et A = AA'A, donc:

$$AX = AA'AX = AAA'X = A^2A'X \in \operatorname{Im} A^2$$
.

Ainsi, $\operatorname{Im} A \subset \operatorname{Im} A^2$, donc $\operatorname{Im} A^2 = \operatorname{Im} A$, ce qui entraine que $\operatorname{Im} a^2 = \operatorname{Im} a$ et :

$$rg\left(a^{2}\right) = rg\left(a\right)$$

5 - On veut $\mathbb{R}^n = \operatorname{Im} A \oplus \ker A$. Par le théorème du rang, on a déjà :

$$n = \dim \mathbb{R}^n = rg(A) + \dim(\ker A).$$

Il suffit donc de prouver que $\operatorname{Im} A \cap \ker A = \{0\}$. Soit $X \in \operatorname{Im} A \cap \ker A$.

Comme $X \in \text{Im } A$, on a X = AZ avec $Z \in \mathcal{M}_{n,1}(\mathbb{R})$ et comme $X \in \ker A$, on a AX = 0.

Ainsi, $AX = A^2Z = 0$, donc $Z \in \ker A^2$.

On a toujours $\ker A \subset \ker A^2$. Or, $rg(A^2) = rg(A)$, donc avec le théorème du rang, on obtient :

$$\dim(\ker A) = n - rg(A) = n - rg(A^2) = \dim(\ker A^2).$$

Ainsi, $\ker A \subset \ker A^2$ et les deux sous-espaces ont la même dimension donc $\ker A = \ker A^2$.

On avait $Z \in \ker A^2$, donc $Z \in \ker A$ et ainsi, X = AZ = 0. Ceci prouve que :

$$\operatorname{Im} A \cap \ker A = \{0\}.$$

Ainsi, $\operatorname{Im} A \cap \ker A = \{0\}$ et $rg(A) + \dim(\ker A) = \dim \mathbb{R}^n$, donc:

$$\mathbb{R}^n = \operatorname{Im} A \oplus \ker A = \operatorname{Im} a \oplus \ker a$$

6 - Soient \mathcal{B}_1 et \mathcal{B}_2 deux bases de Im A et ker A respectivement. Alors, $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ est une base de \mathbb{R}^n adaptée à la décomposition $\mathbb{R}^n = \operatorname{Im} A \oplus \ker A$.

Les sous espaces $\operatorname{Im} A$ et $\ker A$ sont stables par a. Si on appelle a_1 et a_2 les endomorphismes induits par a sur $\operatorname{Im} A$ et $\ker A$ respectivement, on a $M_{\mathcal{B}}(a) = \begin{pmatrix} M_{\mathcal{B}_1}(a_1) & 0_{r,n-r} \\ 0_{n-r,r} & M_{\mathcal{B}_2}(a_2) \end{pmatrix}$ avec r = rg(A). De plus, $a_2 = 0$ donc $M_{\mathcal{B}_2}(a_2) = 0_{n-r,n-r}$ et, en notant $B = M_{\mathcal{B}_1}(a_1) \in \mathcal{M}_r(\mathbb{R})$, on a alors:

$$M_{\mathcal{B}}(a) = \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix}.$$

De plus, on a $\ker a_1 = \{x \in \operatorname{Im} A \setminus a_1(x) = a(x) = 0\} = \operatorname{Im} A \cap \ker A = \{0\}$, donc $a_1 \in GL(\operatorname{Im} A)$, soit $B \in GL_r(\mathbb{R})$.

Comme les matrice s $M_{\mathcal{B}}(a)$ et $A = M_{\mathcal{B}_c}(a)$ représentent le même endomorphisme a dans deux bases de \mathbb{R}^n , elles sont semblables et finalement, avec r = rg(A):

Il existe
$$B \in GL_r(\mathbb{R})$$
 et $W \in GL_n(\mathbb{R})$ telles que $A = W \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}$.

7 - Posons $A' = W \begin{pmatrix} B^{-1} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}$. On a:

•
$$A'A = W \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1} = AA'$$
;

$$\bullet \quad AA'A = W \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}W \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1} = W \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1} = A ;$$

$$\bullet \quad A'AA' = W \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}W \begin{pmatrix} B^{-1} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1} = W \begin{pmatrix} B^{-1} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1} = A'.$$

On a A'A = AA', A = AA'A et A' = A'AA', donc A' est un pseudo-inverse de A, et ainsi :

A admet au moins un pseudo-inverse.

8 - Comme A'A = AA', on a a'a = aa' et donc :

 $\operatorname{Im} a$ et $\ker a$ sont stables par a'.

La matrice de a' dans la base $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ de \mathbb{R}^n introduite dans la question 6 est alors de la forme $M_{\mathcal{B}}(a') = \begin{pmatrix} M_{\mathcal{B}_1}(a_1') & 0_{r,n-r} \\ 0_{n-r,r} & M_{\mathcal{B}_2}(a_2') \end{pmatrix}$ où a_1' et a_2' les endomorphismes induits par a sur Im A et A respectivement.

Si $X \in \ker A$, on a:

$$A'X = A'AA'X = A'A'AX = (A')^20 = 0$$
.

Donc $a_2'=0$, soit $M_{\mathcal{B}_2}(a_2')=0_{n-r,n-r}$ et en posant $D=M_{\mathcal{B}_1}(a_1')\in\mathcal{M}_r(\mathbb{R})$, on obtient :

$$M_{\mathcal{B}}(a') = \begin{pmatrix} D & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix}.$$

Avec $W=P^{\mathcal{B}}_{\mathcal{B}_c}$, la matrice de passage de \mathcal{B}_c à \mathcal{B} , on a alors $M_{\mathcal{B}_c}(a')=W\left(M_{\mathcal{B}}(a')\right)W^{-1}$, soit :

$$A' = W \begin{pmatrix} D & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}$$

9 - On a A = AA'A, donc a = aa'a et:

$$aa' = aa'aa' = (aa')^2$$
.

Comme aa' est linéaire :

aa' est un projecteur.

On a $\operatorname{Im} aa' \subset \operatorname{Im} a$ et comme a = aa'a, on a $\operatorname{Im} a = \operatorname{Im} aa'a \subset \operatorname{Im} aa'$, donc :

$$\operatorname{Im} aa' = \operatorname{Im} a$$

On a $\ker a \subset \ker a'a$. Avec a = aa'a, si $x \in \ker a'a$, on a a(x) = aa'a(x) = a(0) = 0, donc $x \in \ker a$. Ainsi, $\ker a'a \subset \ker a$ et donc, $\ker a'a = \ker a$. Or, a'a = aa', d'où:

$$\ker aa' = \ker a$$

Ainsi, aa' est le projecteur sur $\operatorname{Im} a$, parallèlement à $\ker a$, donc dans la base \mathcal{B} de \mathbb{R}^n adaptée à la décomposition $\mathbb{R}^n = \operatorname{Im} A \oplus \ker A$ introduite plus haut, on a :

$$M_{\mathcal{B}}(aa') = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix}.$$

Avec $W = P_{\mathcal{B}_c}^{\mathcal{B}}$, la matrice de passage de \mathcal{B}_c à \mathcal{B} , on a :

$$AA' = M_{\mathcal{B}_c}(a)M_{\mathcal{B}_c}(a') = M_{\mathcal{B}_c}(aa') = W(M_{\mathcal{B}}(aa'))W^{-1}.$$

Soit, $W^{-1}(AA')W = M_{\mathcal{B}}(aa')$ et donc :

$$W^{-1}(AA')W = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix}$$

10 - On a $A = W \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}$ (question 6) et $A' = W \begin{pmatrix} D & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}$ (question 8), donc:

$$\begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} = W^{-1} (AA') W = (W^{-1}AW) (W^{-1}A'W)$$

$$= \begin{pmatrix} B & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} \begin{pmatrix} D & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} = \begin{pmatrix} BD & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix}$$

Ceci donne $BD = I_r$ et donc $D = B^{-1}$.

Ainsi, si A admet un pseudo-inverse A', alors $A' = W \begin{pmatrix} B^{-1} & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{pmatrix} W^{-1}$ et donc :

 \boldsymbol{A} admet au plus un pseudo-inverse.

III Calcul de X_{∞}

11 - Pour tout $z \in \mathbb{C}^n$, il existe $x, y \in \mathbb{R}^n$ tels que z = x + iy et, avec $a(x), a(y) \in \mathbb{R}^n$:

$$a_c \circ a_c(z) = a_c \circ a_c(x+iy) = a_c \left(a_c(x+iy) \right) = a_c \left(a(x) + ia(y) \right) = a_c \left(a(x) \right) + ia_c \left(a(y) \right)$$
$$= a \left(a(x) \right) + ia \left(a(y) \right) = a^2(x) + ia^2(y) = (a^2)_c(x+iy) = (a^2)_c(z)$$

Ainsi, pour tout $z \in \mathbb{C}^n$, $a_c \circ a_c(z) = (a^2)_c(z)$, donc:

$$a_c \circ a_c = (a^2)_c$$

12 - On a $a_c \in \mathcal{L}(\mathbb{C}^n)$. Si on note $(\varepsilon_1, ..., \varepsilon_n)$ la base canonique de \mathbb{C}^n , on a $a_c(\varepsilon_k) = a(\varepsilon_k)$ (car les coordonnées de ε_k valent 0 ou 1, donc sont réelles). Ainsi, la matrice de a_c dans la base canonique de \mathbb{C}^n est celle de a dans la base canonique de \mathbb{R}^n , c'est-à-dire a.

On a donc:

$$\chi_{a_n} = \det(X I_n - A) = \chi_a.$$

On obtient de même $\chi_{(a^2)_c} = \chi_{a^2}$ et comme d'après la question 11, $a_c^2 = (a^2)_c$, on a $\chi_{a_c^2} = \chi_{a^2}$.

Rappelons que P est une matrice stochastique, strictement positive de $\mathcal{M}_n(\mathbb{R})$. D'après le théorème 1 admis, 1 est valeur propre simple de P, donc 0 valeur propre simple de $A = I_n - P$, autrement dit, 0 est racine simple de $\chi_{a_c} = \chi_a$.

Or, on a:

$$\chi_{a^2}(X^2) = \det\left(X^2 I_n - A^2\right) = \det\left[\left(X I_n - A\right)\left(X I_n + A\right)\right]$$

$$= \det\left(X I_n - A\right) \det\left(X I_n + A\right)$$

$$= (-1)^n \det\left(X I_n - A\right) \det\left(-X I_n - A\right) = (-1)^n \chi_a(X) \chi_a(-X)$$

Comme 0 est de multiplicité 1 dans $\chi_a(X)$, donc aussi dans $\chi_a(-X)$, 0 est de multiplicité 2 dans $\chi_a(X)\chi_a(-X)$, donc dans $\chi_{a^2}(X^2)$, et ainsi, 0 est de multiplicité 1 dans $\chi_{a^2}(X)$.

Ainsi, 0 est de multiplicité 1 dans $\chi_{a_c} = \chi_a$ et $\chi_{a_c^2} = \chi_{a^2}$, ce qui implique que :

$$\dim \ker a_c^2 = \dim \ker a^2 = \dim \ker a_c = \dim \ker a = 1$$
.

Avec le théorème du rang, on obtient :

$$rg(a_c^2) = n - \dim \ker a_c^2 = n - \dim \ker a_c = rg(a_c)$$
.

Et comme, on a toujours $a_c^2(\mathbb{C}^n) = \operatorname{Im} a_c^2 \subset \operatorname{Im} a_c = a_c(\mathbb{C}^n)$, on obtient bien :

$$a_c^2(\mathbb{C}^n) = a_c(\mathbb{C}^n)$$

13 - On vient d'établir que dim $\ker a^2 = \dim \ker a = 1$, donc d'après le théorème du rang :

$$rg(a^2) = rg(a) = n-1$$

D'après la partie précédente, $rg(a^2) = rg(a)$ implique l'existence d'un unique pseudo-inverse de A, que l'on nomme A'.

14 - Soit $C \in GL_n(\mathbb{R})$. Pour tout $k \in \mathbb{N}^*$:

$$\begin{split} \left(\sum_{j=0}^{k-1} (I_n - C)^j\right) C &= \left(\sum_{j=0}^{k-1} (I_n - C)^j\right) \left(I_n - (I_n - C)\right) \\ &= \sum_{j=0}^{k-1} (I_n - C)^j - \left(\sum_{j=0}^{k-1} (I_n - C)^j\right) (I_n - C) \\ &= \sum_{j=0}^{k-1} (I_n - C)^j - \sum_{j=0}^{k-1} (I_n - C)^{j+1} \\ &= \sum_{j=0}^{k-1} \left[(I_n - C)^j - (I_n - C)^{j+1} \right] \\ &= (I_n - C)^0 - (I_n - C)^{k-1+1} \quad \text{par t\'elescopage} \\ &= I_n - (I_n - C)^k \end{split}$$

Et comme *C* est inversible, on peut écrire, pour tout $k \in \mathbb{N}^*$:

$$\sum_{j=0}^{k-1} (I_n - C)^j = \left(I_n - (I_n - C)^k\right) C^{-1}$$

15 - On a $A = I_n - P$, donc $P = I_n - A$.

Procédons par récurrence sur $k \in \mathbb{N}^*$.

Initialisation: On a:

$$\sum_{j=0}^{1-1} P^j = P^0 = I_n \text{ et } (I_n - P)A' + (I_n - AA') = AA' + I_n - AA' = I_n.$$

La propriété est donc vraie au rang k = 1.

Hérédité : Supposons la propriété vraie à un rang $k \in \mathbb{N}^*$. On a alors :

$$\sum_{j=0}^{k} P^{j} = I_{n} + \sum_{j=1}^{k} P^{j} = I_{n} + \sum_{j=0}^{k-1} P^{j+1} = I_{n} + \left(\sum_{j=0}^{k-1} P^{j}\right) P$$

Par hypothèse de récurrence, $\sum_{j=0}^{k-1} P^j = (I_n - P^k)A' + k(I_n - AA')$, donc :

$$\sum_{j=0}^{k} P^{j} = I_{n} + ((I_{n} - P^{k})A' + k(I_{n} - AA'))P$$

$$= I_{n} + A'P - P^{k}A'P + k(P - AA'P)$$

Or, A et A' commutent, donc $P = I_n - A$ commute avec A', d'où:

$$\sum_{j=0}^{k} P^{j} = I_{n} + A'P - P^{k}PA' + k(P - AA'P)$$

$$= I_{n} + A'(I_{n} - A) - P^{k+1}A' + k(I_{n} - A) - AA'(I_{n} - A)$$

$$= I_{n} + A' - A'A - P^{k+1}A' + k(I_{n} - A - AA' + AA'A)$$

Avec A'A = AA' et AA'A = A, on obtient :

$$\sum_{j=0}^{k} P^{j} = I_{n} + A' - AA' - P^{k+1}A' + k (I_{n} - A - AA' + A)$$

$$= A' - P^{k+1}A' + I_{n} - AA' + k (I_{n} - AA')$$

$$= (I_{n} - P^{k+1})A' + (k+1)(I_{n} - AA')$$

Ainsi, la propriété est donc vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}^*$, soit :

$$\sum_{j=0}^{k-1} P^{j} = (I_{n} - P^{k})A' + k(I_{n} - AA')$$

16 - D'après la question précédente, on a pour tout $k \in \mathbb{N}^*$:

$$\frac{1}{k} \sum_{i=0}^{k-1} P^{i} = \frac{1}{k} (I_{n} - P^{k}) A' + I_{n} - AA'.$$

Et en utilisant la norme introduite dans l'énoncé, on a :

$$\left\|\frac{1}{k}(I_n-P^k)A'\right\|\leq \frac{1}{k}\left\|I_n-P^k\right\|\left\|A'\right\|\leq \frac{1}{k}\Big(\left\|I_n\right\|+\left\|P^k\right\|\Big)\left\|A'\right\|.$$

Prouvons alors par récurrence sur k que pour tout $k \in \mathbb{N}^*$, $\|P^k\| \le 1$.

Initialisation : D'après la question 2, $||P^1|| = ||P|| = 1$, donc la propriété est vraie au rang k = 1.

Hérédité: Supposons la propriété vraie à un rang $k \in \mathbb{N}^*$. On a alors d'après la question 1:

$$||P^{k+1}|| = ||P^k P|| \le ||P^k|| ||P|| \le 1 \times 1 = 1.$$

Ainsi, la propriété est donc vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}^*$.

On a donc pour tout $k \in \mathbb{N}^*$:

$$\left\| \frac{1}{k} (I_n - P^k) A' \right\| \le \frac{\left(\|I_n\| + 1 \right) \|A'\|}{k}.$$

Comme $\lim_{k \to +\infty} \frac{\left(\|I_n\|+1\right)\|A'\|}{k} = 0$, on a par comparaison, $\lim_{k \to +\infty} \left\|\frac{1}{k}(I_n - P^k)A'\right\| = 0$, soit:

$$\lim_{k \to +\infty} \frac{1}{k} (I_n - P^k) A' = 0.$$

Et avec $\frac{1}{k} \sum_{i=0}^{k-1} P^{i} = \frac{1}{k} (I_{n} - P^{k}) A' + I_{n} - AA'$, on obtient :

$$\lim_{k \to +\infty} \frac{1}{k} \sum_{j=0}^{k-1} P^j = I_n - AA'$$

17 - D'après la question 3, P^k est stochastique pour tout $k \in \mathbb{N}^*$, donc tous ses coefficients sont positifs. Il en va de même pour $P^0 = I_n$, donc, pour tout $k \in \mathbb{N}^*$, les coefficients de $\frac{1}{k} \sum_{j=0}^{k-1} P^j$ sont des sommes de nombres positifs, donc sont positifs et comme $\lim_{k \to +\infty} \frac{1}{k} \sum_{j=0}^{k-1} P^j = I_n - AA^i$, les coefficients de $I_n - AA^i$ sont tous positifs, en tant que limites de suites de réels positifs.

De plus:

$$(I_n - AA')J_n = J_n - AA'J_n = J_n - A'AJ_n$$

= $J_n - A'(I_n - P)J_n = J_n - A'(J_n - PJ_n)$
= $J_n - A'O_n = J_n$

Ainsi:

La matrice $I_n - AA'$ est bien stochastique.

De plus, par définition de A', on a AA'A = A, soit $A - AA'A = 0_n$ ou encore :

$$(I_n - AA')A = 0_n$$

18 - Soit $X \in \mathcal{K}_n$ quelconque.

Par linéarité à droite du produit matriciel, l'application $M \mapsto XM$ est linéaire sur $\mathcal{M}_n(\mathbb{R})$, qui est de dimension finie, donc elle est continue sur $\mathcal{M}_n(\mathbb{R})$.

Comme $\lim_{k \to +\infty} \frac{1}{k} \sum_{j=0}^{k-1} P^j = I_n - AA'$, on a:

$$\lim_{k \to +\infty} \left(\frac{1}{k} \sum_{j=0}^{k-1} X P^j \right) = \lim_{k \to +\infty} X \left(\frac{1}{k} \sum_{j=0}^{k-1} P^j \right) = X \left(I_n - AA' \right)$$

Or, d'après le théorème 1 admis, on a $\lim_{k \to +\infty} \left(\frac{1}{k} \sum_{j=0}^{k-1} X P^j \right) = X_{\infty}$. Ainsi, pour tout $X \in \mathcal{K}_n$:

$$X(I_n - AA') = X_{\infty}.$$

Si on prend $X = L_i = (0 \cdots 0 \ 1 \ 0 \cdots 0) \in \mathcal{K}_n$ où le 1 apparait en $i^{\text{ième}}$ position avec $i \in [\![1,n]\!]$, $L_i(I_n - AA') = X_\infty$ est la $i^{\text{ième}}$ ligne de $I_n - AA'$, donc toutes les lignes de $I_n - AA'$ sont égales à X_∞ . Comme $J_n X_\infty$ est la matrice de $\mathcal{M}_n(\mathbb{R})$ dont toutes les lignes sont égales à X_∞ , on obtient bien :

$$I_n - AA' = J_n X_{\infty}$$