Corrigé du DM n° 3

Partie I : Nilpotence

1) a. Comme A est nilpotente, l'ensemble $\{k \in \mathbb{N}, A^k = 0_n\}$ est non vide. De plus, $A^0 = I_n \neq 0_n$, donc $0 \notin \{k \in \mathbb{N}, A^k = 0_n\}$. Ainsi, cet ensemble est une partie non vide de \mathbb{N}^* , donc admet un plus petit élément $p \in \mathbb{N}^*$. On a alors pour tout $k \in \mathbb{N}$:

- si k < p, $k \notin \{k \in \mathbb{N}, A^k = 0_n\}$ et donc $A^k \neq 0_n$;
- si $k \ge p$, $A^k = A^p A^{k-p} = 0_n A^{k-p} = 0_n$.

Ainsi:

Il existe $p \in \mathbb{N}^*$ tel que pour tout $k \in \mathbb{N}$, $A^k = 0_n$ quand $k \ge p$ et $A^k \ne 0_n$ quand k < p.

b. On a $A^p = 0$ avec $p \in \mathbb{N}^*$, donc $\det(A^p) = (\det A)^p = 0$, ce qui implique $\det A = 0$ et ainsi :

A n'est pas inversible.

c. Comme p-1 < p, $A^{p-1} \neq 0_n$, donc:

Il existe un vecteur
$$Y \in \mathcal{M}_{n,1}(\mathbb{R})$$
 tel que $A^{p-1}Y \neq 0$.

Soit $(\lambda_0, ..., \lambda_{p-1}) \in \mathbb{R}^p$ tel que $\lambda_{p-1}A^{p-1}Y + ... + \lambda_1AY + \lambda_0Y = 0$.

Supposons l'un des λ_k non nul et notons $m = \min\{k \in [0, p-1], \lambda_k \neq 0\}$. On a donc $\lambda_m \neq 0$ et $\lambda_k = 0$ pour tout $k \in [0, m-1]$ (si cet ensemble est non vide).

On a alors $\lambda_{p-1}A^{p-1}Y + ... + \lambda_m A^m Y = 0$ et en appliquant A^{p-1-m} , on obtient :

$$A^{p-1-m}\left(\lambda_{p-1}A^{p-1}Y + \ldots + \lambda_m A^mY\right) = \lambda_{p-1}A^{2(p-1)-m}Y + \ldots + \lambda_{m+1}A^pY + \lambda_m A^{p-1}Y = \lambda_m A^{p-1}Y = 0.$$

Or, $A^{p-1}Y \neq 0$, donc $\lambda_m A^{p-1}Y = 0$ donne $\lambda_m = 0$, ce qui est absurde.

Ainsi, supposer que l'un des λ_k est non nul mène à une absurdité, donc tous les λ_k sont nuls, ce qui permet de conclure que :

La famille
$$(A^{p-1}Y, A^{p-2}Y, ..., AY, Y)$$
 est libre.

d. La famille $(A^{p-1}Y, A^{p-2}Y, ..., AY, Y)$ est une famille libre de p vecteurs de $\mathcal{M}_{n,1}(\mathbb{R})$ qui est de dimension n, donc :

e. On suppose ici que p = n.

Soit u l'endomorphisme de \mathbb{R}^n canoniquement associé à A. D'après la question c, il existe un vecteur $y \in \mathbb{R}^n$ tel que $\mathcal{B} = \left(u^{n-1}(y), u^{n-2}(y), \dots, u(y), y\right)$ est libre. Or, cette famille contient n vecteurs et $n = \dim \mathbb{R}^n$, donc \mathcal{B} est une base de \mathbb{R}^n . On a alors:

$$M_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} = \left(\delta_{i+1,j} \right)_{1 \leq i, j \leq n}.$$

Comme $M_{\mathcal{B}_c}(u) = A$ où \mathcal{B}_c est la base canonique de \mathbb{R}^n , A et $\left(\delta_{i+1,j}\right)_{1 \le i,j \le n}$ sont les matrices du même endomorphisme dans deux bases, donc :

$$A$$
 est semblable à $\left(\delta_{i+1,j}\right)_{1\leq i,j\leq n}$.

2) On vient de voir que pour toute matrice $A \in \mathcal{N}$, d'indice de nilpotence p, soit $A \in \mathcal{N}_p$, on a $p \in \llbracket 1, n \rrbracket$, donc : $\mathcal{N} \subset \mathcal{N}_1 \cup \mathcal{N}_2 \cup ... \cup \mathcal{N}_n$.

Et, par définition, $\mathcal{N}_p \subset \mathcal{N}$ pour tout $p \in [\![1,n]\!]$, donc : $\mathcal{N}_1 \cup \mathcal{N}_2 \cup ... \cup \mathcal{N}_n \subset \mathcal{N}$.

Ainsi, on a bien:

$$\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2 \cup ... \cup \mathcal{N}_n$$

3) Soit $k \in \mathbb{N}^*$ fixé. On veut prouver que $M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^k$ est continue.

Pour une matrice $P \in \mathcal{M}_n(\mathbb{R})$ quelconque, notons $[P]_{i,j}$ ses coefficients.

Comme $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, l'application $M \mapsto M^k$ est continue sur $\mathcal{M}_n(\mathbb{R})$ si et seulement si $M \mapsto \left[M^k\right]_{i,j}$ est continue sur $\mathcal{M}_n(\mathbb{R})$ pour tous $i,j \in [1,n]$.

Prouvons par récurrence sur $k \in \mathbb{N}^*$ que pour tous $i, j \in [1, n]$, $M \mapsto [M^k]_{i,j}$ est polynômiale en les coefficients de M, donc en les $[M]_{\ell,\ell}$ ($\ell, \ell' \in [1, n]$).

- Pour k = 1 et pour tous $i, j \in [1, n]$, $M \mapsto [M]_{i,j}$ est bien polynômiale en les $[M]_{\ell,\ell}$, donc la propriété est vraie au rang k = 1.
- Supposons la propriété vraie à un rang $k \in \mathbb{N}^*$. On a pour tous $i, j \in [1, n]$:

$$\left[M^{k+1}\right]_{i,j} = \sum_{r=1}^{n} \left[M\right]_{i,r} \left[M^{k}\right]_{r,j}.$$

Comme les $[M^k]_{r,j}$ sont polynômiales en les $[M]_{\ell,\ell'}$ par hypothèse de récurrence, les $[M]_{i,r}[M^k]_{r,j}$ le sont aussi et il en va de même de leur somme.

Ainsi, la propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}^*$.

Alors, si pour tous $i, j \in [1, n]$, l'application $M \mapsto [M^k]_{i,j}$ est polynômiale en les coefficients de M, alors elle est continue sur $\mathcal{M}_n(\mathbb{R})$ (qui est de dimension finie) et d'après ce que l'on a annoncé au début de cette question, on peut conclure que :

L'application
$$M \mapsto M^k$$
 est continue sur $\mathcal{M}_n(\mathbb{R})$.

4) Notons φ l'application $M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^n$. Pour $M \in \mathcal{M}_n(\mathbb{R})$, on a :

$$\varphi(M) = M^n = 0_n \quad \Leftrightarrow \quad M \in \mathcal{N} .$$

Donc:

$$\mathcal{N} = \mathbf{\phi}^{-1} \left(\left\{ \mathbf{0}_n \right\} \right).$$

D'après la question précédente, φ est continue sur $\mathcal{M}_n(\mathbb{R})$. Or, $\{0_n\}$ est fermé dans $\mathcal{M}_n(\mathbb{R})$, donc $\varphi^{-1}(\{0_n\})$ est fermé dans $\mathcal{M}_n(\mathbb{R})$, autrement dit :

$$\mathcal{N}$$
 est fermé dans $\mathcal{M}_{\!{}_{n}}(\mathbb{R})$.

5) Soient E et F deux parties de $\mathcal{M}_n(\mathbb{R})$ (ce qui suit est vrai dans n'importe quel espace normé) telles que $E \subset F$, et \overline{E} et \overline{F} leurs adhérences.

Soit $x \in \overline{E}$. Par caractérisation séquentielle, il existe une suite $(x_k) \in E^{\mathbb{N}}$ qui converge vers x. Or, $E \subset F$, donc $(x_k) \in F^{\mathbb{N}}$ et ainsi, $x \in \overline{F}$. Ceci prouve que $\overline{E} \subset \overline{F}$.

On a vu dans la question 1)b qu'aucune matrice de ${\mathcal N}$ n'est inversible, donc :

$$\mathcal{N} \subset \mathcal{M}_{n}(\mathbb{R}) \setminus GL_{n}(\mathbb{R}) \iff GL_{n}(\mathbb{R}) \subset \mathcal{M}_{n}(\mathbb{R}) \setminus \mathcal{N}.$$

D'après ce que l'on vient de prouver, on a alors :

$$\overline{GL_n(\mathbb{R})} \subset \overline{\mathcal{M}_n(\mathbb{R}) \setminus \mathcal{N}} \subset \mathcal{M}_n(\mathbb{R}).$$

Or, on a admis que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$, donc $\overline{GL_n(\mathbb{R})} = \mathcal{M}_n(\mathbb{R})$ et ainsi :

$$\overline{\mathcal{M}_n(\mathbb{R})\setminus\mathcal{N}}=\mathcal{M}_n(\mathbb{R}).$$

Autrement dit:

$$\mathcal{M}_{_{\!n}}(\mathbb{R}) \backslash \mathcal{N}$$
 est dense dans $\mathcal{M}_{_{\!n}}(\mathbb{R})$.

6) Soient $A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. On a $A_2^2 = B_2^2 = 0_2$, $A_2 + B_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $(A_2 + B_2)^2 = I_2$, donc, pour tout $k \in \mathbb{N}$, $(A_2 + B_2)^{2k} = I_2$ et $(A_2 + B_2)^{2k+1} = A_2 + B_2$, donc $(A_2 + B_2)^k \neq 0_2$.

Ainsi, la matrice $\frac{1}{2}A_2 + \frac{1}{2}B_2$ n'est pas nilpotente, donc \mathcal{N} n'est pas convexe quand n = 2.

Pour n > 2 En posant $A = \begin{pmatrix} A_2 & 0_{2,n-2} \\ 0_{n-2,2} & 0_{n-2} \end{pmatrix}$ et $B = \begin{pmatrix} B_2 & 0_{2,n-2} \\ 0_{n-2,2} & 0_{n-2} \end{pmatrix}$, on a $A^2 = B^2 = 0_n$, mais pour tout $k \in \mathbb{N}$, $(A+B)^k = \begin{pmatrix} (A_2+B_2)^k & 0_{2,n-2} \\ 0_{n-2,2} & 0_{n-2} \end{pmatrix} \neq 0_n$, donc $\frac{1}{2}A_2 + \frac{1}{2}B_2$ n'est pas nilpotente.

Finalement:

 ${\mathcal N}$ n'est pas convexe.

7) a. Soit $\lambda \in \mathbb{C}$. On a:

$$\chi_A(\lambda) = 0 \iff \det(\lambda I_3 - A) = 0 \iff \lambda I_3 - A \notin GL_n(\mathbb{R}) \iff \ker(\lambda I_3 - A) \neq \{0\}.$$

Or, $X \in \ker(\lambda I_3 - A)$ revient à $AX = \lambda X$, donc λ est racine de χ_A si et seulement s'il existe $Z \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que $AZ = \lambda Z$, autrement dit : (i) \Leftrightarrow (ii).

De plus, s'il existe $Z \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que pour tout $k \in \mathbb{N}$, $A^k Z = \lambda^k Z$, alors on a, entre autres, pour k = 1, $AZ = \lambda Z$, donc: (iii) \Rightarrow (ii).

Prouvons la réciproque.

Supposons qu'il existe $Z \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que $AZ = \lambda Z$. Prouvons par récurrence sur $k \in \mathbb{N}$, que pour tout $k \in \mathbb{N}$, $A^k Z = \lambda^k Z$.

- On a $A^0Z = Z = \lambda^0 Z$, donc la propriété est vraie au rang k = 0.
- Si pour $k \in \mathbb{N}$ donné, on a $A^k Z = \lambda^k Z$, alors :

$$A^{k+1}Z = A^k(AZ) = A^k(\lambda Z) = \lambda A^k Z = \lambda(\lambda^k Z) = \lambda^{k+1}Z.$$

Donc, la propriété est vraie au rang k+1.

La propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}$ et ainsi : (ii) \Rightarrow (iii).

Finalement, on a (i) \Leftrightarrow (ii) et (ii) \Leftrightarrow (iii), donc:

Les trois propriétés (i), (ii) et (iii) sont bien équivalentes.

b. Soit λ une racine complexe de χ_A : il en existe d'après le théorème de d'Alembert-Gauss.

D'après ce qui précède, il existe $Z \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que $AZ = \lambda Z$, et donc $A^p Z = \lambda^p Z$ où p est l'indice de nilpotence de A. Comme $A^p = 0_n$, on a alors $\lambda^p Z = 0$, donc $\lambda^p = 0$ car $Z \neq 0$, et ainsi, $\lambda = 0$.

Ceci prouve que la seule racine complexe de χ_A est 0. Or, toujours d'après le théorème de d'Alembert-Gauss, χ_A est scindé dans $\mathbb C$ et comme on a admis que χ_A est unitaire, de degré n, on peut conclure que :

$$\chi_A = X^n$$

8) On considère $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{R}[X]$ non nul et $\mathscr{E} = \{A \in \mathcal{M}_n(\mathbb{R}), P(A) = 0_n\}$.

D'après la question 3, l'application $M \mapsto M^k$ est continue sur $\mathcal{M}_n(\mathbb{R})$ pour tout $k \in \mathbb{N}^*$. Il en va de même pour l'application constante $M \mapsto M^0 = I_n$.

Alors, l'application $\psi: M \mapsto P(M) = \sum_{k=0}^d a_k M^k$ est continue sur $\mathcal{M}_n(\mathbb{R})$ comme combinaison linéaires d'applications continues sur $\mathcal{M}_n(\mathbb{R})$.

Or, $\mathscr{E} = \psi^{-1}(\{0_n\})$ et $\{0_n\}$ est fermé dans $\mathcal{M}_n(\mathbb{R})$, donc :

$$\mathscr{E} = \{ A \in \mathcal{M}_n(\mathbb{R}), P(A) = 0_n \} \text{ est ferm\'e dans } \mathcal{M}_n(\mathbb{R}).$$