PSI* septembre 2024

DM de Mathématiques n° 3

Soit un entier $n \ge 2$.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est nilpotente si l'une de ses puissances est nulle.

- 1) Soit A une matrice nilpotente de $\mathcal{M}_n(\mathbb{R})$.
 - a. Montrer qu'il existe un entier $p \ge 1$ tel que pour tout $k \in \mathbb{N}$, $A^k = 0_n$ quand $k \ge p$ et $A^k \ne 0_n$ quand k < p. Cet entier p est appelé indice de nilpotence de A.
 - \odot On pourra considérer l'ensemble $\{k \in \mathbb{N}, A^k = 0_n\}$.
 - b. Prouver que A n'est pas inversible.
 - c. Justifier qu'il existe un vecteur $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A^{p-1}Y \neq 0$, puis montrer que la famille $(A^{p-1}Y, A^{p-2}Y, ..., AY, Y)$ est libre.
 - d. En déduire que $p \le n$.
 - e. Montrer que si p = n, A est semblable à la matrice $\left(\delta_{i+1,j}\right)_{1 \le i,j \le n}$.

On appelle \mathcal{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$ et, pour tout $p \ge 1$, \mathcal{N}_p l'ensemble des matrices nilpotentes d'indice p de $\mathcal{M}_n(\mathbb{R})$.

- 2) Montrer que $\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2 \cup ... \cup \mathcal{N}_n$.
- 3) Soit $k \in \mathbb{N}^*$. Montrer que l'application qui à une matrice $M \in \mathcal{M}_n(\mathbb{R})$ associe la matrice M^k est continue sur $\mathcal{M}_n(\mathbb{R})$.
- 4) En déduire que \mathcal{N} est fermé dans $\mathcal{M}_n(\mathbb{R})$.
- 5) Prouver que $\mathcal{M}_n(\mathbb{R}) \setminus \mathcal{N}$ est dense dans $\mathcal{M}_n(\mathbb{R})$.
 - © On admettra que $GL_n(\mathbb{R})$ l'est, mais on prouvera que si $E \subset F$, alors $\overline{E} \subset \overline{F}$ où \overline{E} et \overline{F} sont les adhérences de E et F.
- 6) La partie \mathcal{N} est-elle convexe?
- 7) Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose $\chi_A = \det(XI_3 A)$.

On admet que χ_A est un polynôme réel, unitaire et de degré n.

- a. Soit λ un nombre *complexe*. Prouver que les trois assertions suivantes sont équivalentes :
 - (i) λ est racine de χ_A ;
 - (ii) Il existe $Z \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que $AZ = \lambda Z$;
 - (iii) Il existe $Z \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que pour tout $k \in \mathbb{N}$, $A^k Z = \lambda^k Z$.
- b. Montrer alors que si A est nilpotente, alors $\chi_A = X^n$.
 - © Les 5/2 n'ont bien entendu ici pas le droit au cours de PSI non encore fait cette année
- 8) Soit un polynôme P non nul fixé de $\mathbb{R}[X]$. Montrer que l'ensemble $\{A \in \mathcal{M}_n(\mathbb{R}), P(A) = 0_n\}$ est fermé dans $\mathcal{M}_n(\mathbb{R})$.