Corrigé du DS n° 1

I – Préliminaires

Q1. On a $G_0 = 1$ et:

$$G_1 = X (G_0 + (X+1)G_0') = X$$

$$G_2 = X (G_1 + (X+1)G_1') = X (X + (X+1))$$

Donc:

$$G_1 = X \qquad G_2 = 2X^2 + X$$

Q2. Pour tout réel x, la série $\sum x^n$ est une série géométrique de raison x. Elle converge donc si et seulement si |x| < 1 et, dans ce cas, sa somme est $\frac{1}{1-x}$. Ainsi :

$$I =]-1,1[$$
 et, pour tout $x \in I$, $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.

Q3. Soient $p \in \mathbb{N}$ et $x \in \mathbb{R}$.

Si p = 0, on vient de voir que $\sum x^n$ converge si et seulement si $x \in I$.

Si $p \ge 0$, alors:

- si $|x| \ge 1$, alors $\lim_{n \to +\infty} |n^p x^n| = +\infty$, donc $\sum n^p x^n$ diverge grossièrement;
- si |x| < 1, alors on a $q = \frac{1+|x|}{2} \in \left[\frac{1}{2}, 1 \right[\text{ et } \frac{x}{q} \in I, \text{ donc } \lim_{n \to +\infty} \left| \frac{n^p x^n}{q^n} \right| = \lim_{n \to +\infty} \left| n^p \left(\frac{x}{q} \right)^n \right| = 0$ par croissances comparées, soit $n^p x^n = \underset{n \to +\infty}{o} \left(q^n \right)$ et la série géométrique positive $\sum q^n$ converge, donc par comparaison, $\sum n^p x^n$ converge.

Ainsi, pour tout $p \in \mathbb{N}$:

La série
$$\sum n^p x^n$$
 converge si et seulement si $x \in I$.

Q4. Soit $p \in \mathbb{N}$. D'après ce qui est admis dans l'énoncé, on a pour tout $x \in I$:

$$x D_p'(x) = x \sum_{n=1}^{+\infty} n^p \left(n x^{n-1} \right) = \sum_{n=1}^{+\infty} n^{p+1} x^n = \sum_{n=0}^{+\infty} n^{p+1} x^n = D_{p+1}(x) .$$

Ainsi, on a bien pour tous $p \in \mathbb{N}$ et $x \in I$:

$$D_{p+1}(x) = x D_p'(x)$$

$$\forall x \in I, D_p(x) = \frac{1}{1-x} G_p\left(\frac{x}{1-x}\right)$$
».

Q5. On veut prouver par récurrence sur p que, pour tout $p \in \mathbb{N}$, on a :

$$\forall x \in I, D_p(x) = \frac{1}{1-x} G_p\left(\frac{x}{1-x}\right)$$
».

Remarquons déjà que pour tout $x \in I$, $x \ne 1$, donc $\frac{x}{1-x}$ est bien défini.

Initialisation:

Pour p = 0, on a $G_0 = 1$, donc pour tout $x \in I$, $G_0\left(\frac{x}{1-x}\right) = 1$ et alors :

$$D_0(x) = \frac{1}{1-x} = \frac{1}{1-x} G_0\left(\frac{x}{1-x}\right).$$

La propriété est donc vraie au rang p = 0.

Hérédité :

Supposons la propriété vraie à un rang $p \in \mathbb{N}$. Alors, par hypothèse de récurrence, on a pour tout $x \in I$, $D_p(x) = \frac{1}{1-x} G_p\left(\frac{x}{1-x}\right)$ et donc, d'après la question précédente :

$$D_{p+1}(x) = x D_{p}'(x) = x \left[\frac{1}{(1-x)^{2}} G_{p} \left(\frac{x}{1-x} \right) + \frac{1}{1-x} \frac{1}{(1-x)^{2}} G_{p}' \left(\frac{x}{1-x} \right) \right]$$

$$= \frac{1}{1-x} \left[\frac{x}{1-x} G_{p} \left(\frac{x}{1-x} \right) + \frac{x}{(1-x)^{2}} G_{p}' \left(\frac{x}{1-x} \right) \right]$$

Or, par définition des G_n , on a :

$$G_{p+1}\left(\frac{x}{1-x}\right) = \frac{x}{1-x}\left[G_{p}\left(\frac{x}{1-x}\right) + \left(\frac{x}{1-x} + 1\right)G_{p}'\left(\frac{x}{1-x}\right)\right] = \frac{x}{1-x}G_{p}\left(\frac{x}{1-x}\right) + \frac{x}{(1-x)^{2}}G_{p}'\left(\frac{x}{1-x}\right).$$

Donc, $D_{p+1}(x) = \frac{1}{1-x}G_{p+1}\left(\frac{x}{1-x}\right)$ et ainsi, la propriété est vraie au rang p+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $p \in \mathbb{N}$, soit pour tout $p \in \mathbb{N}$ et tout $x \in I$:

$$D_p(x) = \frac{1}{1-x} G_p\left(\frac{x}{1-x}\right)$$

II - Nombres de Fubini

II.A - Dénombrement

Q6. Avec $F_0 = 1$ et la relation de récurrence, on obtient :

$$F_{1} = \sum_{k=0}^{0} {1 \choose k} F_{k} = F_{0} = 1$$

$$F_{2} = \sum_{k=0}^{1} {2 \choose k} F_{k} = {2 \choose 0} F_{0} + {2 \choose 1} F_{1} = F_{0} + 2F_{1} = 3$$

$$F_{3} = \sum_{k=0}^{2} {3 \choose k} F_{k} = {3 \choose 0} F_{0} + {3 \choose 1} F_{1} + {3 \choose 2} F_{2} = F_{0} + 3F_{1} + 3F_{2} = 13$$

Ainsi:

$$F_1 = 1$$
 $F_2 = 3$ $F_3 = 13$

Q7. Les parties non vides de $\{1,2,3\}$ sont : $\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\}$ et $\{1,2,3\}$, donc :

$${1,2,3} = {1} \cup {2} \cup {3} = {1,2} \cup {3} = {1,3} \cup {2} = {2,3} \cup {3}.$$

Les partitions ordonnées de l'ensemble {1,2,3} sont alors :

Et donc:

Il y a 13 partitions ordonnées de $\{1,2,3\}$.

Q8. Remarquons que le nombre de partitions ordonnées d'un ensemble quelconque de cardinal n est le même que le nombre de partitions ordonnées de $\{1, \dots, n\}$.

Pour construire une partition ordonnée (X_1, \dots, X_p) de $\{1, \dots, n\}$, commençons par choisir k, le cardinal de X_1 . Comme X_1 doit être non vide, $k \in [\![1,n]\!]$. Il y a alors $\binom{n}{k}$ possibilités de choisir la partie X_1 de $\{1, \dots, n\}$.

Pour chacun des $\binom{n}{k}$ choix possibles de X_1 , il reste à construire une partition ordonnée (X_2,\ldots,X_p) de $\{1,\ldots,n\}\setminus X_1$ pour obtenir une partition ordonnée de $\{1,\ldots,n\}$. Comme $\operatorname{Card}(\{1,\ldots,n\}\setminus X_1)=n-k$, il y a u_{n-k} possibilités de choisir (X_2,\ldots,X_p) , et donc $\binom{n}{k}u_{n-k}$ possibilités de choisir (X_1,\ldots,X_p) avec $\operatorname{Card} X_1=k$. Comme $k\in [\![1,n]\!]$, on obtient bien :

$$u_n = \sum_{k=1}^n \binom{n}{k} u_{n-k}$$

Q9. Par convention, on a $F_0 = u_0 = 1$.

Prouvons par récurrence forte sur n que pour tout $n \in \mathbb{N}^*$, $u_n = F_n$.

Initialisation:

Pour n = 1, on a $F_1 = 1$ et il n'y a qu'une seule partition ordonnée de l'ensemble $\{1\}$: $(\{1\})$. Ainsi, $u_1 = 1 = F_1$ et la propriété est vraie au rang n = 1.

Hérédité:

Supposons la propriété vraie jusqu'à un rang $n \in \mathbb{N}^*$.

Par hypothèse de récurrence, on a $u_k = F_k$ pour tout $k \in [1, n]$. Alors, d'après la question précédente et avec une réindexation, on a :

$$u_{n+1} = \sum_{k=1}^{n+1} \binom{n+1}{k} u_{n+1-k} = \sum_{k=0}^{n} \binom{n+1}{n+1-k} u_k = \sum_{k=0}^{n} \binom{n+1}{k} u_k = \sum_{k=0}^{n} \binom{n+1}{k} F_k = F_{n+1}.$$

Ainsi, la propriété est vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}^*$, soit $u_n = F_n$ et comme $F_0 = u_0$:

Les suites
$$(F_n)_{n\in\mathbb{N}}$$
 et $(u_n)_{n\in\mathbb{N}}$ sont égales.

II.B - Majoration des nombres de Fubini

Q10. On a $2 = e^{\ln 2} = \sum_{k=0}^{+\infty} \frac{(\ln 2)^k}{k!} = 1 + \sum_{k=1}^{+\infty} \frac{(\ln 2)^k}{k!}$, donc pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} \frac{(\ln 2)^{k}}{k!} = 2 - 1 - \sum_{k=n+1}^{+\infty} \frac{(\ln 2)^{k}}{k!} = 1 - \sum_{k=n+1}^{+\infty} \frac{(\ln 2)^{k}}{k!}.$$

Et comme $\sum_{k=n+1}^{+\infty} \frac{(\ln 2)^k}{k!} \ge 0$, on a bien pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} \frac{(\ln 2)^k}{k!} \le 1$$

Q11. Prouvons par récurrence forte que, pour tout $n \in \mathbb{N}$, on a $0 \le \frac{F_n}{n!} \le \frac{1}{(\ln 2)^n}$.

Initialisation:

On a
$$\frac{F_0}{0!} = \frac{1}{(\ln 2)^0} = 1$$
, donc $0 \le \frac{F_0}{0!} \le \frac{1}{(\ln 2)^0}$ et la propriété est vraie au rang $n = 0$.

Hérédité:

Supposons la propriété vraie jusqu'à un rang $n \in \mathbb{N}$.

Par hypothèse de récurrence, on a donc $0 \le \frac{F_k}{k!} \le \frac{1}{(\ln 2)^k}$ pour tout $k \in [0, n]$.

Alors, avec
$$F_{n+1} = \sum_{k=0}^{n} {n+1 \choose k} F_k = \sum_{k=0}^{n} \frac{n!}{(n+1-k)!} \frac{F_k}{k!}$$
, on a :

$$0 \le F_{n+1} \le \sum_{k=0}^{n} \frac{n!}{(n+1-k)!} \frac{1}{(\ln 2)^{k}}.$$

Or, en réindexant, on a :

$$\sum_{k=0}^{n} \frac{n!}{(n+1-k)!} \frac{1}{(\ln 2)^{k}} = \sum_{k=1}^{n+1} \frac{n!}{k!} \frac{1}{(\ln 2)^{n+1-k}} = \frac{n!}{(\ln 2)^{n+1}} \sum_{k=1}^{n+1} \frac{(\ln 2)^{k}}{k!}.$$

Avec la question précédente, on a $\sum_{k=1}^{n+1} \frac{(\ln 2)^k}{k!} \le 1$, donc $\sum_{k=0}^{n} \frac{n!}{(n+1-k)!} \frac{1}{(\ln 2)^k} \le \frac{n!}{(\ln 2)^{n+1}}$, d'où :

$$0 \le F_{n+1} \le \frac{n!}{(\ln 2)^{n+1}}.$$

Ainsi, la propriété est vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}$, soit :

$$0 \le \frac{F_n}{n!} \le \frac{1}{(\ln 2)^n}$$

Q12. Soit x un réel tel que $|x| < \ln 2$. On a alors pour tout $n \in \mathbb{N}$:

$$\left|\frac{F_n}{n!}x^n\right| = \frac{F_n}{n!}|x|^n \le \frac{|x|^n}{(\ln 2)^n} = \left(\frac{|x|}{\ln 2}\right)^n.$$

Or, comme $|x| < \ln 2$, on a $0 \le \frac{|x|}{\ln 2} < 1$ et la série géométrique $\sum \left(\frac{|x|}{\ln 2}\right)^n$ converge, donc par

comparaison, la série $\sum \frac{F_n}{n!} x^n$ converge absolument, donc converge. Ainsi :

Pour tout réel
$$x$$
 tel que $|x| < \ln 2$, la série $\sum \frac{F_n}{n!} x^n$ converge.

II.C - Minoration des nombres de Fubini

Q13. Soit $x \in J =] - \ln 2$, $\ln 2 [$. On a :

$$2(f(x)-1) = 2\sum_{n=1}^{+\infty} \frac{F_n}{n!} x^n = 2\sum_{n=0}^{+\infty} \frac{F_{n+1}}{(n+1)!} x^{n+1}$$
 (en réindexant)

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n+1} \frac{F_k}{k!} \frac{1}{(n+1-k)!} \right) x^{n+1}$$
 (par défintion de la suite $(F_n)_{n \in \mathbb{N}}$)

$$= \sum_{n=1}^{+\infty} \left(\sum_{k=0}^{n} \frac{F_k}{k!} \frac{1}{(n-k)!} \right) x^n$$
 (en réindexant à nouveau)

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{F_k}{k!} x^k \frac{x^{n-k}}{(n-k)!} \right) - 1$$

Or, les séries $\sum \frac{F_n}{n!} x^n$ et $\sum \frac{x^n}{n!}$ convergent absolument (d'après la question précédente avec $|x| < \ln 2$ pour la première et pour tout réel x pour la seconde), donc on peut utiliser le produit de Cauchy, qui donne :

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{F_k}{k!} x^k \frac{x^{n-k}}{(n-k)!} \right) = \left(\sum_{n=0}^{+\infty} \frac{F_n}{n!} x^n \right) \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \right) = f(x) e^x.$$

Et ainsi, on a bien pour tout $x \in J$:

$$2(f(x)-1)=e^x f(x)-1$$

Q14. Pour tout $x \in J$, $x \ne \ln 2$, donc $2 - e^x \ne 0$ et:

$$2(f(x)-1)=e^x f(x)-1 \iff 2f(x)-e^x f(x)=1 \iff f(x)=\frac{1}{2-e^x}.$$

Ainsi, f est l'inverse d'une fonction de classe C^{∞} sur \mathbb{R} et qui ne s'annule pas sur J, donc :

$$f$$
 est de classe C^{∞} sur J .

On a de plus, pour tout $x \in J$:

$$f'(x) = -\frac{-e^x}{(2-e^x)^2} = \frac{e^x}{2-e^x} f(x) = \frac{1}{2e^{-x}-1} f(x).$$

Prouvons alors par récurrence sur k que pour tout $k \in \mathbb{N}$ et tout $x \in J$:

$$f^{(k)}(x) = G_k \left(\frac{1}{2e^{-x} - 1}\right) f(x)$$
.

Initialisation:

On a pour tout $x \in J$, $f^{(0)}(x) = f(x) = G_0 \left(\frac{1}{2e^{-x} - 1}\right) f(x)$, car $G_0 = 1$, donc la propriété est vraie au rang k = 0.

Hérédité:

Supposons la propriété vraie à un rang $k \in \mathbb{N}$, soit $f^{(k)}(x) = G_k \left(\frac{1}{2e^{-x}-1}\right) f(x)$. En dérivant, on obtient :

$$\begin{split} f^{(k+1)}(x) &= -\frac{-2e^{-x}}{(2e^{-x}-1)^2} G_k' \left(\frac{1}{2e^{-x}-1}\right) f(x) + G_k \left(\frac{1}{2e^{-x}-1}\right) f'(x) \\ &= \frac{2e^{-x}}{(2e^{-x}-1)^2} G_k' \left(\frac{1}{2e^{-x}-1}\right) f(x) + G_k \left(\frac{1}{2e^{-x}-1}\right) \frac{1}{2e^{-x}-1} f(x) \\ &= \frac{1}{2e^{-x}-1} \left[G_k \left(\frac{1}{2e^{-x}-1}\right) + \frac{2e^{-x}}{2e^{-x}-1} G_k' \left(\frac{1}{2e^{-x}-1}\right) \right] f(x) \\ &= \frac{1}{2e^{-x}-1} \left[G_k \left(\frac{1}{2e^{-x}-1}\right) + \left(\frac{1}{2e^{-x}-1} + 1\right) G_k' \left(\frac{1}{2e^{-x}-1}\right) \right] f(x) \end{split}$$

Or, $G_{k+1} = X (G_k + (X+1)G_k')$, donc:

$$f^{(k+1)}(x) = G_{k+1}\left(\frac{1}{2e^{-x}-1}\right)f(x).$$

Ainsi, la propriété est vraie au rang k+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $k \in \mathbb{N}$, soit pour tout $k \in \mathbb{N}$ et tout $x \in J$:

$$f^{(k)}(x) = G_k \left(\frac{1}{2e^{-x} - 1}\right) f(x)$$

Q15. On admet que pour tout $x \in J$ et tout $k \in \mathbb{N}$, on a $f^{(k)}(x) = \sum_{n=0}^{+\infty} f_n^{(k)}(x)$ avec $f_n : x \mapsto \frac{F_n}{n!} x^n$.

Or, si k > n, $f_n^{(k)} = 0$ et si $k \le n$, $f_n^{(k)} : x \mapsto \frac{F_n}{(n-k)!} x^{n-k}$, donc :

$$f_n^{(k)}(0) = \begin{cases} 0 & \text{si } n \neq k \\ F_k & \text{si } n = k \end{cases}$$

Ainsi, $f^{(k)}(0) = \sum_{n=0}^{+\infty} f_n^{(k)}(0) = f_k^{(k)}(0) = F_k$, autrement dit:

Pour tout
$$n \in \mathbb{N}$$
, $f^{(n)}(0) = F_n$.

D'après la question précédente, pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = G_n\left(\frac{1}{2-1}\right)f(0) = G_n(1)f(0)$.

On a $f(0) = F_0 = 1$ et, d'après la question **Q5**, on a $D_n(x) = \frac{1}{1-x} G_n\left(\frac{x}{1-x}\right)$ pour tout $x \in I =]-1,1[$. En particulier pour $x = \frac{1}{2}$, on obtient $D_n\left(\frac{1}{2}\right) = 2G_n(1)$, soit :

$$F_n = f^{(n)}(0) = G_n(1)f(0) = \frac{1}{2}D_n\left(\frac{1}{2}\right) = \frac{1}{2}\sum_{k=0}^{+\infty}k^n\left(\frac{1}{2}\right)^k.$$

Et ainsi, pour tout $n \in \mathbb{N}$:

$$F_{n} = \frac{1}{2} \sum_{k=0}^{+\infty} \frac{k^{n}}{2^{k}}$$

Q16. Soit $n \in \mathbb{N}$.

Si n=0, $h_0:t\mapsto e^{-t\ln 2}$ est décroissante sur \mathbb{R}_+ , donc admet $h_0(0)=1$ pour maximum sur \mathbb{R}_+ . Si $n\geq 1$, h_n est dérivable sur \mathbb{R}_+ en tant que produite de telles fonctions, de dérivée $h_n':t\mapsto \left(n-(\ln 2)t\right)t^{n-1}e^{-t\ln 2}$.

Alors, $h_n' > 0$ sur $\left[0, \frac{n}{\ln 2}\right]$ et $h_n' < 0$ sur $\left[\frac{n}{\ln 2}, +\infty\right]$, donc h_n est strictement croissante sur $\left[0, \frac{n}{\ln 2}\right]$ et strictement décroissante sur $\left[\frac{n}{\ln 2}, +\infty\right]$. Ceci permet de conclure que :

$$h_n$$
 admet un maximum sur \mathbb{R}_+ , qui est $M_n = h_n \left(\frac{n}{\ln 2}\right) = \left(\frac{n}{e \ln 2}\right)^n$.

Remarquons qu'avec $0^0 = 1$ l'expression ci-dessus reste vraie pour n = 0.

Q17. Soient $n \in \mathbb{N}$ et $t \in \mathbb{R}_+$. On a $\lfloor t \rfloor \in \mathbb{N}$ et avec la question **Q15**:

$$2F_n = \sum_{k=0}^{+\infty} \frac{k^n}{2^k} = \sum_{k=0}^{\lfloor t \rfloor} \frac{k^n}{2^k} + \sum_{k=\lfloor t \rfloor + 1}^{+\infty} \frac{k^n}{2^k} \ge \sum_{k=\lfloor t \rfloor + 1}^{+\infty} \frac{k^n}{2^k}$$

$$\operatorname{car} \sum_{k=0}^{\lfloor t \rfloor} \frac{k^n}{2^k} \ge 0.$$

Et pour tout entier $k \ge \lfloor t \rfloor + 1$, on a $k \ge t \ge 0$, donc $k^n \ge t^n$. Comme la série géométrique $\sum \frac{1}{2^k}$ converge, on peut alors écrire :

$$2F_n \ge \sum_{k=\lfloor t \rfloor + 1}^{+\infty} \frac{t^n}{2^k} = t^n \sum_{k=\lfloor t \rfloor + 1}^{+\infty} \frac{1}{2^k} = t^n \frac{\frac{1}{2^{\lfloor t \rfloor + 1}}}{1 - \frac{1}{2}} = \frac{t^n}{2^{\lfloor t \rfloor}}$$

Enfin, $h_n(t) = \frac{t^n}{2^t}$ et $t \ge \lfloor t \rfloor$, donc $\frac{1}{2^{\lfloor t \rfloor}} \le \frac{1}{2^t}$ et ainsi, $\frac{t^n}{2^{\lfloor t \rfloor}} \le h_n(t)$.

En définitive, on obtient bien pour tout $n \in \mathbb{N}$ et tout $t \in \mathbb{R}_+$:

$$2F_n \ge \sum_{k=\lfloor t\rfloor+1}^{+\infty} \frac{k^n}{2^k} \ge \frac{t^n}{2^{\lfloor t\rfloor}} \ge h_n(t)$$

Q18. A $n \in \mathbb{N}$ fixé, l'inégalité $2F_n \ge h_n(t)$ obtenue ci-dessus est vraie pour tout $t \in \mathbb{R}_+$, et en particulier pour $t = \frac{n}{\ln 2}$, ce qui donne $2F_n \ge h_n \left(\frac{n}{\ln 2}\right) = \left(\frac{n}{e \ln 2}\right)^n$, soit pour tout $n \in \mathbb{N}$:

$$F_n \ge \frac{1}{2} \left(\frac{n}{e \ln 2} \right)^n$$

III – Équivalent de F_n

III.A - Valeur d'une intégrale

Q19. Pour tout $x \in \mathbb{R}_+$, à l'aide d'une intégration par parties, on peut écrire :

$$(\ln 2) H_{n+1}(x) = (\ln 2) \int_0^x h_{n+1}(t) dt = \int_0^x t^{n+1} (\ln 2) e^{-t \ln 2} dt$$

$$= \left[t^{n+1} (-e^{-t \ln 2}) \right]_0^x - \int_0^x (n+1) t^n (-e^{-t \ln 2}) dt$$

$$= -x^{n+1} e^{-x \ln 2} + (n+1) \int_0^x t^n e^{-t \ln 2} dt$$

$$= -h_{n+1}(x) + (n+1) \int_0^x h_n(t) dt$$

Ainsi, on a bien pour tout $x \in \mathbb{R}_+$:

$$(\ln 2) H_{n+1}(x) = (n+1)H_n(x) - h_{n+1}(x)$$

Q20. Prouvons par récurrence sur n que $H_n(x)$ admet une limite finie quand x tend vers $+\infty$. *Initialisation*:

Pour n = 0, on a pour tout $x \in \mathbb{R}_+$:

$$H_0(x) = \int_0^x h_0(t) dt = \int_0^x e^{-t \ln 2} dt = \left[-\frac{1}{\ln 2} e^{-t \ln 2} \right]_0^x = \frac{1}{\ln 2} - \frac{1}{\ln 2} e^{-x \ln 2}.$$

Donc, $\lim_{x \to +\infty} H_0(x) = \frac{1}{\ln 2}$ et la propriété est vraie au rang n = 0.

Hérédité:

Supposons la propriété vraie à un rang $n \in \mathbb{N}$ et notons $\lim_{x \to +\infty} H_n(x) = L_n$.

Comme $\lim_{x \to +\infty} h_{n+1}(x) = \lim_{x \to +\infty} x^n e^{-x \ln 2} = 0$ par croissances comparées, on a alors :

$$\lim_{x \to +\infty} \frac{(n+1)H_n(x) - h_{n+1}(x)}{\ln 2} = \frac{n+1}{\ln 2} L_n.$$

Avec la relation de la question précédente, cela signifie que $H_{n+1}(x)$ admet une limite finie L_{n+1} quand x tend vers $+\infty$ et, ainsi, la propriété est vraie au rang n+1.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}$.

Ainsi, quand x tend vers $+\infty$, $H_n(x)$ admet une limite finie L_n et on a établi que $L_0 = \frac{1}{\ln 2}$ et pour tout $n \in \mathbb{N}$, $L_{n+1} = \frac{n+1}{\ln 2} L_n$.

Cette dernière relation se récrit $\frac{(\ln 2)^{n+1}}{(n+1)!}L_{n+1} = \frac{(\ln 2)^n}{n!}L_n$, donc la suite $\left(\frac{(\ln 2)^n}{n!}L_n\right)_{n\in\mathbb{N}}$ est constante, soit pour tout $n\in\mathbb{N}$:

$$\frac{(\ln 2)^n}{n!} L_n = \frac{(\ln 2)^0}{0!} L_0 = \frac{1}{\ln 2} \iff L_n = \frac{n!}{(\ln 2)^{n+1}}.$$

Finalement, pour tout $n \in \mathbb{N}$:

$$\lim_{x \to +\infty} H_n(x) = \frac{n!}{(\ln 2)^{n+1}}$$

On note alors $\int_0^{+\infty} h_n(t) dt = \frac{n!}{(\ln 2)^{n+1}}$.

III.B - Comparaison série/intégrale

Q21. On a vu que dans la question **Q16** que h_n est croissante sur $\left[0, \frac{n}{\ln 2}\right]$ et décroissante sur

$$\left\lceil \frac{n}{\ln 2}, +\infty \right\rceil$$
.

En posant $N = \left\lfloor \frac{n}{\ln 2} \right\rfloor$, on a $N \ge \left\lfloor \frac{1}{\ln 2} \right\rfloor \ge 1$, $[0, N] \subset \left[0, \frac{n}{\ln 2}\right]$ et $[N+1, +\infty[\subset \left[\frac{n}{\ln 2}, +\infty\right[$, donc:

$$h_n$$
 est croissante sur $[0, N]$ et décroissante sur $[N+1, +\infty[$.

Q22. Pour tout $k \in [0, N-1]$, on a pour tout $t \in [k, k+1] \subset [0, N]$, $h_n(k) \le h_n(t) \le h_n(k+1)$, donc:

$$h_n(k) \le \int_0^N h_n(t) dt \le h_n(k+1)$$
.

En sommant de k = 0 à k = N - 1 et en réindexant le membre de droite, on obtient :

$$\sum_{k=0}^{N-1} h_n(k) \le \sum_{k=0}^{N-1} \int_k^{k+1} h_n(t) dt \le \sum_{k=0}^{N-1} h_n(k+1) = \sum_{k=1}^{N} h_n(k) .$$

Soit, avec la relation de Chasles:

$$\sum_{k=0}^{N-1} h_n(k) \le \int_0^N h_n(t) \, dt \le \sum_{k=1}^N h_n(k)$$

Q23. Par croissances comparées, on a $h_n(k) = \frac{k^n}{2^k} = o_{k \to +\infty} \left(\frac{1}{k^2}\right)$ et la série $\sum \frac{1}{k^2}$ converge donc, par comparaison :

La série
$$\sum_{k\geq N+1} h_n(k)$$
 converge.

En raisonnant comme dans la question précédente, mais en prenant $k \ge N+1$, donc h_n est décroissante sur $[k,k+1] \subset [N+1,+\infty[$, puis en sommant de k=N+1 à l'infinie (tout converge d'après le résultat précédent et la question **Q20**), on obtient :

$$\sum_{k=N+1}^{+\infty} h_n(k+1) \le \int_{N+1}^{+\infty} h_n(t) \, dt \le \sum_{k=N+1}^{+\infty} h_n(k) \, .$$

Soit en réindexant le membre de gauche :

$$\sum_{k=N+2}^{+\infty} h_n(k) \le \int_{N+1}^{+\infty} h_n(t) \, dt \le \sum_{k=N+1}^{+\infty} h_n(k)$$

Q24. D'après la question **Q15**, on a $2F_n = \sum_{k=0}^{+\infty} \frac{k^n}{2^k} = \sum_{k=0}^{+\infty} h_n(k)$.

D'après la question **Q20**, on a
$$\int_0^{+\infty} h_n(t) dt = \int_0^N h_n(t) dt + \int_N^{N+1} h_n(t) dt + \int_{N+1}^{+\infty} h_n(t) dt = \frac{n!}{(\ln 2)^{n+1}}$$
.

En additionnant les doubles inégalités obtenues dans les deux questions précédentes, on obtient :

$$\sum_{k=0}^{N-1} h_n(k) + \sum_{k=N+2}^{+\infty} h_n(k) \le \int_0^N h_n(t) dt + \int_{N+1}^{+\infty} h_n(t) dt \le \sum_{k=1}^N h_n(k) + \sum_{k=N+1}^{+\infty} h_n(k).$$

Soit:

$$2F_n - h_n(N) - h_n(N+1) \le \frac{n!}{(\ln 2)^{n+1}} - \int_N^{N+1} h_n(t) \, dt \le 2F_n.$$

Ceci se récrit :

$$-\int_{N}^{N+1} h_n(t) dt \le 2F_n - \frac{n!}{(\ln 2)^{n+1}} \le h_n(N) + h_n(N+1) - \int_{N}^{N+1} h_n(t) dt$$

Q25. Comme pour tout $t \in \mathbb{R}_+$, $0 \le h_n(t) \le M_n$, on a $h_n(N) \le M_n$, $h_n(N+1) \le M_n$ et:

$$0 \le \int_{N}^{N+1} h_n(t) dt \le \int_{N}^{N+1} M_n dt = M_n.$$

Donc $h_n(N) + h_n(N+1) - \int_N^{N+1} h_n(t) dt \le 2M_n$ et $-M_n \le -\int_N^{N+1} h_n(t) dt$, et le résultat donne alors :

$$-M_n \le 2F_n - \frac{n!}{(\ln 2)^{n+1}} \le 2M_n$$

On a établi que pour tout $n \in \mathbb{N}^*$:

$$\frac{n!}{(\ln 2)^{n+1}} - M_n \le 2F_n \le \frac{n!}{(\ln 2)^{n+1}} + 2M_n.$$

Avec $M_n = \left(\frac{n}{e \ln 2}\right)^n$ et la formule de Stirling, on a :

$$\frac{n!}{(\ln 2)^{n+1}} \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \frac{1}{(\ln 2)^{n+1}} = \frac{\sqrt{2\pi n}}{\ln 2} M_n.$$

Donc $M_n = \underset{n \to +\infty}{o} \left(\frac{n!}{(\ln 2)^{n+1}} \right)$ et ainsi :

$$\frac{n!}{(\ln 2)^{n+1}} - M_n \underset{n \to +\infty}{\sim} \frac{n!}{(\ln 2)^{n+1}} + 2M_n \underset{n \to +\infty}{\sim} \frac{n!}{(\ln 2)^{n+1}}.$$

Le théorème des gendarmes appliqué aux équivalents donne alors $2F_n \sim \frac{n!}{(\ln 2)^{n+1}}$ et donc :

$$F_n \underset{n \to +\infty}{\sim} \frac{n!}{2(\ln 2)^{n+1}}$$

IV - Une suite d'Appell

IV.A – Étude d'un endomorphisme

Q26. Soit $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{R}[X]$ non nul $(d \in \mathbb{N} \text{ et } a_d \neq 0)$.

• Si d = 0, alors $P(X + 1) = P(X) = a_0$.

• Si $d \ge 1$, alors:

$$P(X+1) = \sum_{k=0}^{d} a_k (X+1)^k = a_d (X+1)^d + \sum_{k=0}^{d-1} a_k (X+1)^k = a_d X^d + Q(X)$$

$$\text{avec } Q(X) = a_d \sum_{k=0}^{d-1} \binom{d}{k} X^k + \sum_{k=0}^{d-1} a_k (X+1)^k \in \mathbb{R}_{d-1}[X].$$

Donc, dans les deux cas, le terme de plus haut degré de P(X+1) est $a_d X^d$, celui de P. Ainsi:

P et P(X+1) ont le même degré et le même coefficient dominant.

Q27. Pour tous $P, Q \in \mathbb{R}_n[X]$ et tout $\lambda \in \mathbb{R}$, on a $(\lambda P + Q)(X + 1) = \lambda P(X + 1) + Q(X + 1)$, donc $P \mapsto P(X + 1)$ est linéaire, et ainsi, φ_n est linéaire comme combinaison linéaire d'application linéaires.

Pour tout $P \in \mathbb{R}_n[X]$, P et P(X+1) ont le même terme de plus haut degré. Notons-le $a_d X^d$. Alors, le terme de plus haut degré de $\varphi_n(P) = 2P(X) - P(X+1)$ est $2a_d X^d - a_d X^d = a_d X^d$. Ceci prouve que $\varphi_n(P) \in \mathbb{R}_n[X]$, et $\varphi_n(P)$ et P ont même degré et même coefficient dominant.

Ainsi:

$$\varphi_n$$
 est un endomorphisme de $\mathbb{R}_n[X]$.

Q28. D'après ce que l'on vient de voir, pour tout $P \in \mathbb{R}_n[X]$ non nul, on a $\deg(\varphi_n(P)) = \deg P \ge 0$, donc $\varphi_n(P) \ne 0$. Ainsi, $\varphi_n(P) = 0$ si et seulement si P = 0, donc $\ker \varphi_n = \{0\}$ et ainsi :

L'endomorphisme
$$\varphi_n$$
 est injectif.

Q29. Comme φ_n est un endomorphisme injectif de $\mathbb{R}_n[X]$, qui est de dimension finie, φ_n est bijectif, donc surjectif. Alors, pour tout $Q \in \mathbb{R}_n[X]$, il existe un unique $P \in \mathbb{R}_n[X]$ tel que $\varphi_n(P) = Q$. En particulier pour $Q = X^n \in \mathbb{R}_n[X]$:

Il existe un unique polynôme
$$P_n \in \mathbb{R}_n[X]$$
 tel que $\varphi_n(P_n) = 2P_n(X) - P_n(X+1) = X^n$.

IV.B – Premières propriétés des P_n

Q30. On a vu dans la partie précédente que pour tout $P \in \mathbb{R}_n[X]$, $\deg(\varphi_n(P)) = \deg P$, donc $\deg P_n = \deg(\varphi_n(P_n)) = \deg X^n$, soit :

$$\deg P_n = n$$

Q31. Par définition de P_n , on a $2P_n(X) - P_n(X+1) = X^n$, donc pour tout $k \in \mathbb{N}$:

$$2P_n(k) - P_n(k+1) = k^n$$
.

En divisant par 2^k , on obtient pour tout $k \in \mathbb{N}$:

$$\frac{k^n}{2^k} = \frac{P_n(k)}{2^{k-1}} - \frac{P_n(k+1)}{2^k}$$

D'après la question **Q15**, on a $F_n = \frac{1}{2} \sum_{k=0}^{+\infty} \frac{k^n}{2^k}$. Avec la relation ci-dessus, ceci donne :

$$F_n = \frac{1}{2} \sum_{k=0}^{+\infty} \left(\frac{P_n(k)}{2^{k-1}} - \frac{P_n(k+1)}{2^k} \right)$$

Or, si α_n est le coefficient dominant de P_n , on a avec deg $P_n = n$:

$$\frac{P_n(k+1)}{2^k} \sum_{k \to +\infty} \frac{\alpha_n k^n}{2^k}$$

Alors, $\lim_{k \to +\infty} \frac{P_n(k+1)}{2^k} = \lim_{k \to +\infty} \frac{\alpha_n k^n}{2^k} = 0$ par croissances comparées et avec un télescopage dans

la formule de F_n ci-dessus, on obtient $F_n = \frac{1}{2} \left(\frac{P_n(0)}{2^{-1}} - \lim_{k \to +\infty} \frac{P_n(k+1)}{2^k} \right)$, soit :

$$F_n = P_n(0)$$

Q32. On a $2P_n(X) - P_n(X+1) = X^n$ et $2P_{n+1}(X) - P_{n+1}(X+1) = X^{n+1}$. En dérivant la seconde relation, on obtient :

$$2P_{n+1}'(X) - P_{n+1}'(X+1) = (n+1)X^n = (n+1)\left(2P_n(X) - P_n(X+1)\right).$$

Donc:

$$2(P_{n+1}'(X) - (n+1)P_n(X)) - (P_{n+1}'(X+1) - (n+1)P_n(X+1)) = 0.$$

Soit $\varphi_n(P_{n+1}(X) - (n+1)P_n(X)) = 0$, soit $P_{n+1}(-n+1)P_n \in \ker \varphi_n$. Or, d'après la question **Q15**, $\ker \varphi_n = \{0\}$, donc $P_{n+1}(-n+1)P_n = 0$, soit :

$$P_{n+1}' = (n+1)P_n$$

Q32. La formule de Taylor pour les polynômes appliquée à P_n donne $P_n = \sum_{k=0}^{+\infty} \frac{P_n^{(k)}(0)}{k!} X^k$.

Comme $\deg P_n = n$, on a $P_n^{(k)} = 0$ quand k > n, donc:

$$P_n = \sum_{k=0}^n \frac{P_n^{(k)}(0)}{k!} X^k .$$

On a vu que pour tout $n \in \mathbb{N}$, $P_{n+1}' = (n+1)P_n$, donc

- pour $n \ge 1$, on a $P_n' = nP_{n-1} = \frac{n!}{(n-1)!}P_{n-1}$;
- pour $n \ge 2$, $P_n^{(2)} = nP_{n-1}' = n((n-1)P_{n-2}) = \frac{n!}{(n-2)!}P_{n-2}$.
- ...

On conjecture que pour tout $k \in [0,n]$, on a $P_n^{(k)} = \frac{n!}{(n-k)!} P_{n-k}$.

- On a $P_n^{(0)} = P_n = \frac{n!}{(n-0)!} P_{n-0}$ et la relation est vraie au rang k = 0.
- Si pour $k \in [0, n-1]$ (quand $n \ge 1$), on a $P_n^{(k)} = \frac{n!}{(n-k)!} P_{n-k}$, alors:

$$P_n^{(k+1)} = \frac{n!}{(n-k)!} P_{n-k}' = \frac{n!}{(n-k)!} (n-k) P_{n-k-1} = \frac{n!}{(n-(k+1))!} P_{n-(k+1)}.$$

Donc, la relation est vraie au rang k+1.

La propriété est initialisée et héréditaire, donc vraie pour tout $k \in [0, n]$.

Alors, avec la question **Q31**, on obtient pour tout $k \in [0, n]$:

$$P_n^{(k)}(0) = \frac{n!}{(n-k)!} P_{n-k}(0) = \frac{n!}{(n-k)!} F_{n-k}.$$

Et ainsi, $P_n = \sum_{k=0}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} F_{n-k} X^k$, soit:

$$P_n = \sum_{k=0}^n \binom{n}{k} F_{n-k} X^k$$

IV.C - Structure euclidienne

Q34. On a vu dans la question **Q30** que pour tout $n \in \mathbb{N}$, $\deg P_n = n$, donc $(P_0, P_1, ..., P_n)$ est une famille échelonnée en degrés de n+1 polynômes de $\mathbb{R}_n[X]$. Comme $\dim \mathbb{R}_n[X] = n+1$, cette famille est une base de $\mathbb{R}_n[X]$ et ainsi, pour tout $P \in \mathbb{R}_n[X]$:

Il existe un unique
$$(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$$
 tel que $P = a_0 P_0 + a_1 P_1 + ... + a_n P_n$.

Q35. Soient $P \in \mathbb{R}_n[X]$ et $j \in \mathbb{N}$. Par linéarité de la dérivation, on a :

$$(\varphi_n(P))^{(j)} = (2P(X) - P(X+1))^{(j)} = 2P^{(j)}(X) - P^{(j)}(X+1)$$

Soit:

$$\left(\varphi_n(P)\right)^{(j)} = \varphi_n\left(P^{(j)}\right)$$

Pour tous $P, Q \in \mathbb{R}_n[X]$, on peut donc écrire $\langle P, Q \rangle = \sum_{j=0}^n \frac{\left(\left(\varphi_n(P) \right)^{(j)}(0) \right) \left(\left(\varphi_n(Q) \right)^{(j)}(0) \right)}{(j!)^2}$.

L'application $(P,Q) \mapsto \langle P,Q \rangle$ est bien définie sur $\mathbb{R}_n[X]$ et à valeurs dans \mathbb{R} .

Elle est symétrique par commutativité du produit et bilinéaire par linéarité de Σ , de φ_n et de la dérivation (on a $(\varphi_n(P+\lambda Q))^{(j)} = (\varphi_n(P)+\lambda \varphi_n(Q))^{(j)} = (\varphi_n(P))^{(j)} + (\lambda \varphi_n(Q))^{(j)}$ pour tous $P,Q \in \mathbb{R}_n[X]$, tout $\lambda \in \mathbb{R}$ et tout $j \in [0,n]$.

De plus, pour tout $P \in \mathbb{R}_n[X]$:

$$\langle P, P \rangle = \sum_{i=0}^{n} \frac{\left(\left(\varphi_{n}(P)\right)^{(j)}(0)\right)^{2}}{\left(j!\right)^{2}} \geq 0.$$

Sachant qu'une somme de réels au carré est nulle si et seulement si chaque terme de la somme est nul, on a avec $\varphi_n(P) \in \mathbb{R}_n[X]$ et la formule de Taylor pour les polynômes rappelée plus haut :

$$\langle P, P \rangle = 0 \quad \Leftrightarrow \quad \forall j \in \llbracket 0, n \rrbracket, \ \left(\varphi_n(P) \right)^{(j)}(0) = 0 \quad \Leftrightarrow \quad \varphi_n(P) = \sum_{j=0}^n \frac{\left(\varphi_n(P) \right)^{(j)}(0)}{j!} X^j = 0.$$

Et comme l'application ϕ_n est injective, ceci donne :

$$\langle P, P \rangle = 0 \iff P = 0.$$

Ainsi, $(P,Q) \mapsto \langle P,Q \rangle$ est une forme bilinéaire, symétrique, définie positive sur $\mathbb{R}_n[X]$, donc :

L'application $(P,Q) \mapsto \langle P,Q \rangle$ définit un produit scalaire sur $\mathbb{R}_n[X]$.

Q36. Soit $(j,k) \in \mathbb{N}^2$. On a $2P_k^{(j)}(0) - P_k^{(j)}(1) = \varphi_k(P_k^{(j)})(0)$ et:

$$\varphi_k\left(P_k^{(j)}\right) = \left(\varphi_k(P_k)\right)^{(j)} = \left(X^k\right)^{(j)} = \left\{ \begin{cases} \frac{k!}{(k-j)!} X^{k-j} \\ 0 & \text{si } j > k \end{cases} \right.$$

Et comme, en 0, X^{k-j} vaut 0 quand j < k et 1 quand j = k, on obtient bien :

$$2P_k^{(j)}(0) - P_k^{(j)}(1) = \begin{cases} 0 & \text{si } j \neq k \\ k! & \text{si } j = k \end{cases} = \delta_{j,k} k!$$

Q37. On a vu dans la question **Q34** que la famille $(P_0, P_1, ..., P_n)$ est une base de $\mathbb{R}_n[X]$. Reste à prouver qu'elle est orthonormée pour le produit scalaire $(P,Q) \mapsto \langle P,Q \rangle$.

Pour tous $k, k \in [0, n]$, on a:

$$\langle P_{k}, Q_{k} \rangle = \sum_{j=0}^{n} \frac{\left(2P_{k}^{(j)}(0) - P_{k}^{(j)}(1)\right) \left(2P_{k'}^{(j)}(0) - P_{k'}^{(j)}(1)\right)}{(j!)^{2}}$$

$$= \sum_{j=0}^{n} \frac{\left(\delta_{j,k}k!\right) \left(\delta_{j,k'}(k')!\right)}{(j!)^{2}} = \frac{k!\left(\delta_{k,k'}(k')!\right)}{(k!)^{2}} = \delta_{k,k'}$$

Ainsi, la famille $(P_0, P_1, ..., P_n)$ est orthonormée pour le produit scalaire $(P,Q) \mapsto \langle P,Q \rangle$ et donc :

 $(P_0, P_1, ..., P_n)$ est une base orthonormée de $\mathbb{R}_n[X]$ pour le produit scalaire $(P,Q) \mapsto \langle P,Q \rangle$.

Q38. Pour tout polynôme $P \in \mathbb{R}_n[X]$, on peut alors écrire $P = \sum_{k=0}^n \langle P_k, P \rangle P_k$ et pour tout $k \in [0, n]$:

$$\langle P_{k}, P \rangle = \sum_{j=0}^{n} \frac{\left(2P_{k}^{(j)}(0) - P_{k}^{(j)}(1)\right)\left(2P^{(j)}(0) - P^{(j)}(1)\right)}{(j!)^{2}}$$

$$= \sum_{j=0}^{n} \frac{\left(\delta_{j,k}k!\right)\left(\left(\varphi_{n}(P)\right)^{(j)}(0)\right)}{(j!)^{2}} = \frac{k!\left(\left(\varphi_{n}(P)\right)^{(k)}(0)\right)}{(k!)^{2}} = \frac{\left(\varphi_{n}(P)\right)^{(k)}(0)}{k!}$$

Ainsi, pour tout polynôme $P \in \mathbb{R}_n[X]$:

$$P = \sum_{k=0}^{n} \frac{(\varphi_{n}(P))^{(k)}(0)}{k!} P_{k}$$