Corrigé du DM n° 1

1) Soit $n \in \mathbb{N}^*$. On a $T_n = tr(A_n) = Z_1 + ... + Z_n$.

 $T_{\scriptscriptstyle n}$ est une fonction de $Z_{\scriptscriptstyle 1},\dots,Z_{\scriptscriptstyle n}$, qui sont des variables aléatoires, donc :

 T_n est une variable aléatoire.

Les variables $Z_1, ..., Z_n$ sont indépendantes et suivent toutes la même loi de Bernoulli de paramètre p, donc :

 $T_n = Z_1 + ... + Z_n$ suit la loi binomiale de paramètres n et p.

On a alors:

$$E(T_n) = np \text{ et } V(T_n) = np(1-p).$$

2) Soit $n \in \mathbb{N}$ tel que $n \ge 3$. En développant par rapport à la dernière colonne, on obtient :

$$D_{n} = \begin{vmatrix} Z_{1} & 1 & 0 & \cdots & 0 \\ 1 & Z_{2} & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & Z_{n-1} & 1 \\ 0 & \cdots & 0 & 1 & Z_{n} \end{vmatrix}_{n} = Z_{n} \begin{vmatrix} Z_{1} & 1 & 0 & \cdots & 0 \\ 1 & Z_{2} & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & Z_{n-2} & 1 \\ 0 & \cdots & 0 & 1 & Z_{n-1} \end{vmatrix}_{n-1} - \begin{vmatrix} Z_{1} & 1 & 0 & \cdots & 0 \\ 1 & Z_{2} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 1 & 0 \\ \vdots & \ddots & 1 & Z_{n-2} & 1 \\ 0 & \cdots & 0 & 0 & 1 \end{vmatrix}_{n-1}.$$

Puis en développant par rapport à la dernière ligne de second déterminant n-1, on obtient :

$$D_n = Z_n D_{n-1} - D_{n-2}$$

On a:

$$\chi_{n} = \det \left(X I_{n} - A_{n} \right) = (-1)^{n} \det \left(A_{n} - X I_{n} \right) = (-1)^{n} \begin{vmatrix} Z_{1} - X & 1 & 0 & \cdots & 0 \\ 1 & Z_{2} - X & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & Z_{n-1} - X & 1 \\ 0 & \cdots & 0 & 1 & Z_{n} - X \end{vmatrix}.$$

On peut donc utiliser la relation de récurrence ci-dessus en remplaçant les Z_k par $Z_k - X$, donc les D_k par $(-1)^k \chi_k$. Ceci donne $(-1)^n \chi_n = (Z_n - X)(-1)^{n-1} \chi_{n-1} - (-1)^{n-2} \chi_{n-2}$, soit :

$$\chi_n = (X - Z_n)\chi_{n-1} - \chi_{n-2}$$

- 3) Notons pour tout $n \in \mathbb{N}^*$, $u_n = E(D_n)$. On a:
 - $D_1 = \det A_1 = Z_1$, donc $u_1 = E(D_1) = E(Z_1) = p$.
 - $D_2 = \det A_2 = \begin{vmatrix} Z_1 & 1 \\ 1 & Z_2 \end{vmatrix} = Z_1 Z_2 1$, donc, par linéarité de l'espérance et indépendance de Z_1 et Z_2 , on a $u_2 = E(D_2) = E(Z_1 Z_2) 1 = E(Z_1) E(Z_2) 1 = p^2 1$.

On a vu que pour tout $n \in \mathbb{N}^*$, $D_{n+2} = Z_{n+2}D_{n+1} - D_n$. Or, D_{n+1} ne dépend que de Z_1, Z_2, \dots, Z_{n+1} et les variables Z_1, Z_2, \dots, Z_{n+1} et Z_{n+2} sont indépendantes, donc d'après le lemme des coalitions, D_{n+1} et Z_{n+2} sont indépendantes, et toujours avec la linéarité de l'espérance, on obtient la relation :

$$u_{n+2} = E(D_{n+2}) = E(Z_{n+2}D_{n+1}) - E(D_n) = E(Z_{n+2})E(D_{n+1}) - E(D_n) = p \, u_{n+1} - u_n \, .$$

Remarquons qu'en posant $u_0 = 1$, on a $p u_1 - u_0 = p^2 - 1 = u_2$, donc la relation de récurrence linéaire double $u_{n+2} - p u_{n+1} + u_n = 0$ est vérifiée pour tout $n \in \mathbb{N}$.

L'équation caractéristique associée à la relation de récurrence linéaire double ci-dessus est $x^2 - px + 1 = 0$ de racines complexes $\frac{p - i\sqrt{4 - p^2}}{2}$ et $\frac{p + i\sqrt{4 - p^2}}{2}$, donc pour tout $n \in \mathbb{N}$:

$$u_n = A \left(\frac{p - i\sqrt{4 - p^2}}{2} \right)^n + B \left(\frac{p + i\sqrt{4 - p^2}}{2} \right)^n$$

avec $A, B \in \mathbb{C}$.

Enfin, avec les valeurs initiales, on a $\begin{cases} u_0 = A + B = 1 \\ u_1 = A \frac{p - i\sqrt{4 - p^2}}{2} + B \frac{p + i\sqrt{4 - p^2}}{2} = p \end{cases}$, ce qui donne,

pour tout $n \in \mathbb{N}^*$:

$$E(D_n) = \frac{i}{\sqrt{4 - p^2}} \left[\left(\frac{p - i\sqrt{4 - p^2}}{2} \right)^{n+1} - \left(\frac{p + i\sqrt{4 - p^2}}{2} \right)^{n+1} \right].$$

Or,
$$\left| \frac{p + i\sqrt{4 - p^2}}{2} \right| = \left| \frac{p - i\sqrt{4 - p^2}}{2} \right| = 1$$
, donc, en posant $\cos \alpha = \frac{p}{2} > 0$ et $\sin \alpha = \frac{\sqrt{4 - p^2}}{2} > 0$, on

a
$$\alpha \in \left[0, \frac{\pi}{2}\right], \frac{p + i\sqrt{4 - p^2}}{2} = e^{i\alpha} \text{ et } \frac{p - i\sqrt{4 - p^2}}{2} = e^{-i\alpha}, \text{ donc } :$$

$$E(D_n) = \frac{i}{\sqrt{4 - p^2}} \left[e^{-i(n+1)\alpha} - e^{i(n+1)\alpha} \right] = \frac{2}{\sqrt{4 - p^2}} \frac{e^{i(n+1)\alpha} - e^{-i(n+1)\alpha}}{2i}.$$

Soit, pour tout $n \in \mathbb{N}^*$:

$$E(D_n) = \frac{\sin((n+1)\alpha)}{\sin \alpha} \text{ avec } \alpha = \arccos\left(\frac{p}{2}\right) \in \left]0, \frac{\pi}{2}\right[$$

- 4) Procédons par récurrence double sur $n \in \mathbb{N}^*$.
 - Initialisation

Pour n = 1, on a $\chi_1 = \det(XI_1 - A_1) = X - Z_1$, donc χ_1 est un polynôme aléatoire unitaire de degré 1 et la propriété est vraie au rang n = 1.

Pour n = 2, on a:

$$\chi_2 = \det \left(X I_2 - A_2 \right) = \begin{vmatrix} X - Z_1 & -1 \\ -1 & X - Z_2 \end{vmatrix} = (X - Z_1)(X - Z_2) - 1 = X^2 - (Z_1 + Z_2)X + Z_1 Z_2 - 1.$$

Donc χ_2 est un polynôme aléatoire unitaire de degré 1 et la propriété est aussi vérifiée au rang n=2.

• Hérédité

Pour $n \in \mathbb{N}^*$, supposons la propriété vraie aux rangs n et n+1.

D'après la question précédente, on a $\chi_{n+2} = (X - Z_{n+2})\chi_{n+1} - \chi_n$.

Or, par hypothèse de récurrence, χ_n et χ_{n+1} sont des polynômes aléatoires unitaires de degrés respectifs n et n+1, donc $(X-Z_{n+2})\chi_{n+1}$ est un polynôme aléatoire unitaire de degré n+2 et le terme de plus haut degré de χ_{n+2} est celui de $(X-Z_{n+2})\chi_{n+1}$, donc χ_{n+2} est bien un polynôme aléatoire unitaire de degré n+2. La propriété est vraie au rang n+2.

Finalement, la propriété est initialisée et héréditaire, donc vraie pour tout $n \in \mathbb{N}^*$:

 χ_n est un polynôme aléatoire unitaire de degré n.

5) On a $D_1 = Z_1$ et $D_2 = \begin{vmatrix} Z_1 & 1 \\ 1 & Z_2 \end{vmatrix} = Z_1 Z_2 - 1$.

Or, d'après la question 2, on a $D_3 = Z_3 D_2 - D_1$, donc $D_3 = Z_3 (Z_1 Z_2 - 1) - Z_1$, soit :

$$D_3 = Z_1 Z_2 Z_3 - Z_1 - Z_3$$

Par linéarité de l'espérance, $E(D_3) = E(Z_1Z_2Z_3) - E(Z_1) - E(Z_3)$.

Comme les variables Z_1 , Z_2 et Z_3 sont indépendantes et suivent la loi de Bernoulli de paramètre p, on a $E(Z_1) = E(Z_2) = E(Z_3) = p$ et $E(Z_1 Z_2 Z_3) = E(Z_1) E(Z_2) E(Z_3) = p^3$, donc :

$$E(D_3) = p^3 - 2p$$

Pour tout $n \in \mathbb{N}^*$, $Z_n(\Omega) = \{0,1\}$, donc $Z_n^2 = Z_n$ et:

$$E(D_3^2) = E((Z_1 Z_2 Z_3 - Z_1 - Z_3)^2) = E(Z_1^2 Z_2^2 Z_3^2 + Z_1^2 + Z_3^2 - 2Z_1^2 Z_2 Z_3 - 2Z_1 Z_2 Z_3^2 + 2Z_1 Z_3)$$

$$= E(Z_1 Z_2 Z_3 + Z_1 + Z_3 - 2Z_1 Z_2 Z_3 - 2Z_1 Z_2 Z_3 + 2Z_1 Z_3) = E(-3Z_1 Z_2 Z_3 + 2Z_1 Z_3 + Z_1 + Z_3)$$

$$= -3E(Z_1)E(Z_2)E(Z_3) + 2E(Z_1)E(Z_3) + E(Z_1) + E(Z_3) = -3p^3 + 2p^2 + 2p$$

Alors, $V(D_3) = E(D_3^2) - E(D_3^2)^2 = -3p^3 + 2p^2 + 2p - (p^3 - 2p)^2$, soit:

$$V(D_3) = 2p - 2p^2 - 3p^3 + 4p^4 - p^6$$

6) On a $Z_1(\Omega) = Z_2(\Omega) = Z_3(\Omega) = \{0,1\}$. Avec $D_3 = Z_1Z_2Z_3 - Z_1 - Z_3$, pour $\omega \in \Omega$, les valeurs possibles de $D_3 = Z_1Z_2Z_3 - Z_1 - Z_3$ peuvent être résumées dans un tableau :

$Z_1(\omega)$	0	0	0	0	1	1	1	1
$Z_2(\omega)$	0	0	1	1	0	0	1	1
$Z_3(\omega)$	0	1	0	1	0	1	0	1
$D_3(\omega)$	0	- 1	0	- 1	- 1	-2	- 1	- 1

Ainsi, $D_3(\Omega) = \{-2, -1, 0\}$ et, avec l'indépendance de Z_1 , Z_2 et Z_3 , on obtient la loi de D_3 :

•
$$P(D_3 = -2) = P(Z_1 = 1) P(Z_2 = 0) P(Z_3 = 1) = (1-p) p^2$$
.

•
$$P(D_3 = 0) = P(Z_1 = 0) P(Z_3 = 0) = (1 - p)^2$$
.

•
$$P(D_3 = -1) = P(Z_1 = 0)P(Z_3 = 1) + P(Z_1 = 1)P(Z_3 = 0) + P(Z_1 = 1)P(Z_2 = 1)P(Z_3 = 1)$$

= $2(1-p)p + p^3$.

Remarquons que l'on a bien :

$$P(D_3 = -2) + P(D_3 = -1) + P(D_3 = 0) = (1-p)p^2 + 2(1-p)p + p^3 + (1-p)^2 = 1$$
.

Ainsi, la loi de D_3 peut être résumée dans le tableau :

$Valeur\ de\ D_3$	-2	- 1	0
Probabilité	$(1-p)p^2$	$2(1-p)p+p^3$	$(1-p)^2$

On a alors:

•
$$E(D_3) = (-2)P(D_3 = -2) + (-1) \times P(D_3 = -1) = -2(1-p)p^2 - 2(1-p)p - p^3$$
, soit:
 $E(D_3) = p^3 - 2p$.

•
$$E(D_3^2) = 4P(D_3 = -2) + P(D_3 = -1) = 4(1-p)p^2 + 2(1-p)p + p^3 = 2p + 2p^2 - 3p^3$$
.

•
$$V(D_3) = E(D_3^2) - E(D_3)^2 = 2p + 2p^2 - 3p^3 - (p^3 - 2p)^2$$
, soit:

$$V(D_3) = 2p - 2p^2 - 3p^3 + 4p^4 - p^6$$
.

On retrouve bien les valeurs obtenues dans la question précédente.

7) Pour $\omega \in \Omega$, $A_3(\omega)$ est inversible si et seulement si $D_3(\omega) \neq 0$, donc la probabilité que A_3 soit inversible est $P(D_3 \neq 0) = 1 - P(D_3 = 0)$ et ainsi :

La probabilité que A_3 soit inversible est $1-(1-p)^2$.

8) On a
$$A_3 = (C_1 \ C_2 \ C_3) \in \mathcal{M}_3(\mathbb{R})$$
 avec $C_1 = \begin{pmatrix} Z_1 \\ 1 \\ 0 \end{pmatrix}, C_2 = \begin{pmatrix} 1 \\ Z_2 \\ 1 \end{pmatrix}, C_3 = \begin{pmatrix} 0 \\ 1 \\ Z_3 \end{pmatrix}.$

Pour $\omega \in \Omega$, la matrice $A_3(\omega)$ n'est jamais nulle, donc $R_3(\omega) = rg(A_3(\omega)) \in \{1, 2, 3\}$.

De plus, $C_1(\omega)$ et $C_2(\omega)$ ne sont jamais proportionnelles (du fait de la troisième coordonnée), donc $R_3(\omega) \in \{2,3\}$.

Or, on vient de voir que $P(R_3 = 3) = P(D_3 \neq 0) = 1 - (1 - p)^2$, ainsi, la loi de R_3 peut être résumée dans le tableau :

Valeur de R ₃	2	3
Probabilité	$(1-p)^2$	$1-(1-p)^2$

On a $E(R_3) = 2 \times P(R_3 = 2) + 3 \times P(R_3 = 3) = 2(1-p)^2 + 3(1-(1-p)^2)$, soit:

$$E(R_3) = 3 - (1 - p)^2$$

On a
$$E(R_3^2) = 4 \times P(R_3 = 2) + 9 \times P(R_3 = 3) = 4(1-p)^2 + 9(1-(1-p)^2) = 9-5(1-p)^2$$
, donc:

$$V(R_3) = E(R_3^2) - E(R_3)^2 = 9 - 5(1 - p)^2 - \left(3 - (1 - p)^2\right)^2 = 9 - 5(1 - p)^2 - 9 + 6(1 - p)^2 - (1 - p)^4$$

Soit:

$$V(R_3) = (1-p)^2 (1-(1-p)^2)$$

9) On a
$$\chi_1 = X - Z_1$$
 et $\chi_2 = \begin{vmatrix} X - Z_1 & -1 \\ -1 & X - Z_2 \end{vmatrix} = (X - Z_1)(X - Z_2) - 1$.

Or, d'après la question 2, on a $\chi_3 = (X - Z_3)\chi_2 - \chi_1$, donc :

$$\chi_3 = (X - Z_1)(X - Z_2)(X - Z_3) - 2X + Z_1 + Z_3$$

Pour $\omega \in \Omega$, la fonction polynomiale $f: x \mapsto \chi_3(\omega)(x)$ est continue sur \mathbb{R} .

- $f(0) = -D_3(\omega) \ge 0$;
- $f(1) = (1 Z_1(\omega))(1 Z_2(\omega))(1 Z_3(\omega)) (1 Z_1(\omega)) (1 Z_3(\omega))$, et avec $1 Z_2(\omega) = 0$ ou 1, on obtient:

$$f(1) \le (1 - Z_1(\omega))(1 - Z_3(\omega)) - (1 - Z_1(\omega)) - (1 - Z_3(\omega)) = Z_1(\omega)Z_3(\omega) - 1 \le 0.$$

D'après le théorème des valeurs intermédiaires, on a :

•
$$\begin{cases} \lim_{x \to -\infty} f(x) = -\infty \\ f(0) \ge 0 \end{cases}$$
, donc f s'annule au moins une première fois sur $]-\infty;0]$;

• $\begin{cases} f(1) \le 0 \\ \lim_{x \to +\infty} f(x) = +\infty \end{cases}$, donc f s'annule au moins une seconde fois sur $[1, +\infty[$.

Ainsi, $\chi_3(\omega)$ est un polynôme de $\mathbb{R}_3[X]$ possédant au moins deux racines réelles distinctes, donc n'admet que des racines réelles. Ainsi :

$$\chi_3$$
 admet 3 racines réelles.

10) Rappelons que le déterminant est un invariant de similitude, autrement dit, deux matrices semblables ont le même déterminant. Soient M et N deux matrices semblables de $\mathcal{M}_n(\mathbb{R})$.

Il existe alors $P \in GL_n(\mathbb{R})$ telle que $N = P^{-1}MP$ et :

$$\det(XI_n - N) = \det(XI_n - P^{-1}MP) = \det(P^{-1}(XI_n - M)P) = \det(XI_n - M).$$

Soit maintenant $\omega \in \Omega$. Si la matrice $A_3(\omega)$ est semblable à B, alors $\det A_3(\omega) = \det B$.

Or, B a deux lignes opposées (la première et la dernière), donc det B = 0 et ainsi, det $A_3(\omega) = 0$.

D'après le tableau de la question 6, on a alors $Z_1(\omega) = Z_3(\omega) = 0$.

De plus, en développant par rapport à la première colonne, on a :

$$\det(XI_3 - B) = \begin{vmatrix} X & -1 & -1 \\ -1 & X - 1 & 0 \\ 0 & 1 & X + 1 \end{vmatrix} = X(X - 1)(X + 1) + (-X - 1 + 1) = X^3 - 2X.$$

Or, si $Z_1(\omega) = Z_3(\omega) = 0$ et $Z_2(\omega) = 1$, alors, toujours en développant par rapport à la première colonne, on obtient :

$$\det(XI_3 - A_3(\omega)) = \begin{vmatrix} X & -1 & 0 \\ -1 & X - 1 & -1 \\ 0 & -1 & X \end{vmatrix} = X^3 - X^2 - 2X \neq \det(XI_3 - B).$$

Donc, dans ce cas, $A_3(\omega)$ et B ne sont pas semblables.

Si maintenant $Z_1(\omega) = Z_2(\omega) = Z_3(\omega) = 0$, on a $\det(XI_3 - A_3(\omega)) = X^3 - 2X = \det(XI_3 - B)$, donc $A_3(\omega)$ et *B* peuvent être semblables.

Remarquons que $\det \left(XI_3-B\right)=X(X-\sqrt{2})(X+\sqrt{2})$, donc pour $\lambda\in\left\{-\sqrt{2}\,,0,\sqrt{2}\right\}$, on a $\det\left(\lambda I_3-B\right)=0$ et la matrice λI_3-B , n'est pas inversible. Il existe donc trois vecteurs non nuls U_1,U_2,U_3 de $\mathcal{M}_{3,1}(\mathbb{R})$ tels que $BU_1=-\sqrt{2}\,U_1$, $BU_2=0$ et $BU_3=\sqrt{2}\,U_3$.

Alors, si $\alpha U_1 + \beta U_2 + \gamma U_3 = 0$ avec $\alpha, \beta, \gamma \in \mathbb{R}$, on a:

$$\begin{cases} \alpha U_{1} + \beta U_{2} + \gamma U_{3} = 0 \\ \alpha B U_{1} + \beta B U_{2} + \gamma B U_{3} = 0 \\ \alpha B^{2} U_{1} + \beta B^{2} U_{2} + \gamma B^{2} U_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha U_{1} + \beta U_{2} + \gamma U_{3} = 0 \\ \sqrt{2} \left(-\alpha U_{1} + \gamma U_{3} \right) = 0 \end{cases} \Leftrightarrow \begin{cases} \beta U_{2} = 0 \\ -\alpha U_{1} + \gamma U_{3} = 0 \\ 2 \left(\alpha U_{1} + \gamma U_{3} \right) = 0 \end{cases}$$

Ceci donne $\alpha = \beta = \gamma = 0$, donc la famille (U_1, U_2, U_3) est libre et, comme elle contient trois vecteurs, c'est une base de $\mathcal{M}_{3,1}(\mathbb{R})$ (qui est de dimension 3). Dans cette base la matrice de l'endomorphisme canoniquement associée à B est $diag(-\sqrt{2},0,\sqrt{2})$ et ainsi, la matrice B est semblable à $diag(-\sqrt{2},0,\sqrt{2})$.

Comme $\det \left(XI_3 - A_3(\omega)\right) = \det \left(XI_3 - B\right)$ quand $Z_1(\omega) = Z_2(\omega) = Z_3(\omega) = 0$, alors le même raisonnement s'applique à $A_3(\omega)$, et donc $A_3(\omega)$ est semblable à $\operatorname{diag}\left(-\sqrt{2},0,\sqrt{2}\right)$.

Enfin, la relation de similitude matricielle est transitive, donc comme $A_3(\omega)$ et B sont toutes deux semblables à la même matrice $diag(-\sqrt{2},0,\sqrt{2})$, elle sont semblable.

Nous venons donc d'établir que $A_3(\omega)$ et B sont semblables si et seulement si $Z_1(\omega) = Z_2(\omega) = Z_3(\omega) = 0$ et donc la probabilité recherchée est :

$$P(Z_1 = Z_2 = Z_3 = 0) = P(Z_1 = 0, Z_2 = 0, Z_3 = 0) = P(Z_1 = 0) P(Z_2 = 0) P(Z_3 = 0) = (1 - p)^3$$
.

Finalement:

La probabilité que
$$A_3$$
 soit semblable à $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$ est $(1-p)^3$.